MONOTONIC SMOOTHING SPLINES FITTED BY CROSS-VALIDATION

被引:57
作者
WOOD, SN
机构
关键词
SMOOTHING SPLINE; SPLINE; MONOTONIC; CROSS VALIDATION;
D O I
10.1137/0915069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A practical method for calculating monotonic cubic smoothing splines is given. Linear sufficient conditions for monotonicity are employed, and the spline coefficients are obtained using quadratic programming. The method enables efficient cross-validation estimates of the smoothing parameter to be made and confidence intervals to be calculated for the resulting spline. The results are easy to extend to histogram data.
引用
收藏
页码:1126 / 1133
页数:8
相关论文
共 30 条
[1]   POST-PROCESSING PIECEWISE CUBICS FOR MONOTONICITY [J].
BEATSON, RK ;
WOLKOWICZ, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) :480-502
[2]  
Boor CD., 1978, PRACTICAL GUIDE SPLI
[3]   CO-MONOTONE INTERPOLATING SPLINES OF ARBITRARY DEGREE - A LOCAL APPROACH [J].
COSTANTINI, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :1026-1034
[4]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[5]   C2 RATIONAL QUADRATIC SPLINE INTERPOLATION TO MONOTONIC DATA [J].
DELBOURGO, R ;
GREGORY, JA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) :141-152
[6]   DETERMINATION OF SHAPE PRESERVING SPLINE INTERPOLANTS WITH MINIMAL CURVATURE VIA DUAL PROGRAMS [J].
DIETZE, S ;
SCHMIDT, JW .
JOURNAL OF APPROXIMATION THEORY, 1988, 52 (01) :43-57
[7]  
ELFVING T, 1988, NUMER MATH, V52, P583, DOI 10.1007/BF01400893
[8]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[9]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246
[10]   A METHOD FOR CONSTRUCTING LOCAL MONOTONE PIECEWISE CUBIC INTERPOLANTS [J].
FRITSCH, FN ;
BUTLAND, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :300-304