EXISTENCE OF SOLUTIONS FOR HIGH ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH SOME PERIODIC-TYPE BOUNDARY CONDITION

被引:0
作者
Jhuang, S. C. [1 ]
Lian, W. C. [2 ]
Wang, S. P. [3 ]
Wong, F. H. [1 ]
机构
[1] Natl Taipei Univ Educ, Dept Math, Taipei 10659, Taiwan
[2] Natl Kaohsiung Marine Univ, Kaohsiung, Taiwan
[3] Cardinal Tien Coll Healthcare & Management, Holist Educ Ctr, 171 Jhongsing Rd, Yilan 26646, Taiwan
来源
TAMKANG JOURNAL OF MATHEMATICS | 2010年 / 41卷 / 03期
关键词
Periodic-type bornidary cupper ruid lower solutions; Nagumo's condition; Leray-Schauder degree theory;
D O I
10.5556/j.tkjm.41.2010.728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following high order periodic-type boundary value problem (PBVP) {(E)u((n)(t)) = f(t,u(t), u((1)) (t),...u((n-2)) (t), u((n-1)) (t)) for t epsilon (0, T) (PBC) {u((i)) (0) = 0, 0 <= i <= n - 3, u((n-2))(0) = u((n-2))(T), u((n-1))(0) = u((n-1)) (T), where f epsilon C([0, T] x R-n, R), n >= 2 and satisfies the so-called Nagumo's condition. hi this article, we will use a general upper and lower solution method to establish an existence theorem for solutions of (PBVP).
引用
收藏
页码:293 / 301
页数:9
相关论文
共 15 条
[1]  
Agarwal R. P., 1996, APPL ANAL, V63, P375
[2]  
Agarwal R. P., 1998, NONLINEAR STUDIES, V5, P15
[3]   An application of topological transversality to non-positive higher order difference equations [J].
Agarwal, RP ;
Wong, FH .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :167-178
[4]   Existence of positive solutions for non-positive higher-order BVPs [J].
Agarwal, RP ;
Wong, FH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (01) :3-14
[5]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[6]   A GENERALIZATION OF THE MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR 2ND-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A ;
NIETO, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 151 (01) :181-189
[7]  
De Coster C., 1993, NONLINEAR ANAL BOUND, P1
[8]   EXISTENCE OF PERIODIC-SOLUTIONS OF DUFFING EQUATIONS [J].
HABETS, P ;
METZEN, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :1-32
[9]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[10]   A monotone method for constructing extremal solutions to second-order periodic boundary value problems [J].
Jiang, DQ ;
Fan, M ;
Wan, AY .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) :189-197