On a periodic part of a Shunkov group saturated with wreathed groups

被引:4
作者
Shlepkin, Aleksei Anatolievich [1 ]
机构
[1] Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk 660074, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
group saturated with a set of groups; Shunkov group;
D O I
10.21538/0134-4889-2018-24-3-281-285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group G is saturated with groups from a set of groups (X) over bar if any finite subgroup K of G is contained in a subgroup of G isomorphic to some group from (X) over bar. A group G is called a Shunkov group (a conjugately biprimitively finite group) if, for any finite subgroup H of G, any two conjugate elements of prime order in the quotient group N-G(H)/h generate a finite group. Let G be a group. If all elements of finite orders from G are contained in a periodic subgroup of G, then it is called a periodic part of G and is denoted by t(G). It is known that a Shunkov group may have no periodic part. The existence of a periodic part of a Shunkov group saturated with finite wreathed groups is proved and the structure of the periodic part is established.
引用
收藏
页码:281 / 285
页数:5
相关论文
共 10 条
  • [1] Cherep A.A., 1987, ALGEBR LOG+, V26, P311, DOI [10.1007/BF01980245, DOI 10.1007/BF01980245]
  • [2] Ditsman A.P., 1938, T SEM TEOR GRUP MOSC, P30
  • [3] Kargapolov M. I., 1979, FUNDAMENTALS THEORY
  • [4] The periodic groups saturated by finitely many finite simple groups
    Lytkina, D. V.
    Tukhvatullina, L. R.
    Filippov, K. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (02) : 317 - 321
  • [5] Senashov V.I., 2001, GRUPPY S USLOVIYAMI
  • [6] About Shunkov groups, saturated with linear and unitary groups of dimension 3
    Shlepkin, A. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 341 - 351
  • [7] Shlepkin A.K., 1993, 3 INT C ALG, V0, P369
  • [8] Shlepkin A.K., 1999, THESIS
  • [9] Shlepkin A.K., 1983, ALGEBR LOG+, V22, P165, DOI [10.1007/BF01978669, DOI 10.1007/BF01978669]
  • [10] PERIODIC GROUPS, SATURATED BY WREATHED GROUPS
    Shlyopkin, A. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 56 - 64