EXACT PENALTY FUNCTIONS IN NON-LINEAR PROGRAMMING

被引:290
作者
HAN, SP [1 ]
MANGASARIAN, OL [1 ]
机构
[1] UNIV WISCONSIN,MADISON,WI 53706
关键词
Constraint Qualification; Exact Penalty Functions; Nonlinear Programming; Penalty Functions; Second Order Optimality Conditions;
D O I
10.1007/BF01588250
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is shown that the existence of a strict local minimum satisfying the constraint qualification of [16] or McCormick's [12] second order sufficient optimality condition implies the existence of a class of exact local penalty functions (that is ones with a finite value of the penalty parameter) for a nonlinear programming problem. A lower bound to the penalty parameter is given by a norm of the optimal Lagrange multipliers which is dual to the norm used in the penalty function. © 1979 North-Holland Publishing Company.
引用
收藏
页码:251 / 269
页数:19
相关论文
共 23 条
[1]   NECESSARY AND SUFFICIENT CONDITIONS FOR A PENALTY METHOD TO BE EXACT [J].
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1975, 9 (01) :87-99
[2]   LOWER BOUND FOR CONTROLLING PARAMETERS OF EXACT PENALTY FUNCTIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1978, 15 (03) :278-290
[3]  
DOLECKI S, 1979, SIAM J CONTROL OPTIM, V17
[4]  
Evans J. P., 1973, MATHEMATIEAL PROGRAM, V4, P72
[5]  
Fiacco A., 1990, NONLINEAR PROGRAMMIN
[6]   GLOBALLY CONVERGENT METHOD FOR NONLINEAR-PROGRAMMING [J].
HAN, SP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (03) :297-309
[7]   SUPERLINEARLY CONVERGENT VARIABLE METRIC ALGORITHMS FOR GENERAL NONLINEAR-PROGRAMMING PROBLEMS [J].
HAN, SP .
MATHEMATICAL PROGRAMMING, 1976, 11 (03) :263-282
[8]  
Householder A. S., 1964, THEORY MATRICES NUME
[9]   NEW CONDITIONS FOR EXACTNESS OF A SIMPLE PENALTY FUNCTION [J].
HOWE, S .
SIAM JOURNAL ON CONTROL, 1973, 11 (02) :378-381
[10]  
Karush W., 1939, THESIS U CHICAGO