Resistive Memory-Based Analog Synapses The pursuit for linear and symmetric weight update

被引:109
作者
Woo, Jiyong [1 ]
Yu, Shimeng [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/MNANO.2018.2844902
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This article reviews the recent developments in a type of random access memory (RAM) called resistive RAM (RRAM) for the analog synapse, which is an important building block for neuromorphic computing systems. To achieve high learning accuracy in an artificial neural network based on the backpropagation learning rule, a linear and symmetric weight update behavior of the analog synapse is critical. The physical mechanisms in the RRA M (interfacing switching versus filamentary switching) are discussed, and the pros and cons of each mechanism to emulate the analog synaptic weights are compared. Then, various strategies from a materials and device engineering perspective are surveyed to achieve linearly and symmetric conductance changes under identical pulses. Finally, future research directions are outlined. © 2007-2011 IEEE.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 47 条
[1]   3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications [J].
Adam, Gina C. ;
Hoskins, Brian D. ;
Prezioso, Mirko ;
Merrikh-Bayat, Farnood ;
Chakrabarti, Bhaswar ;
Strukov, Dmitri B. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (01) :312-318
[2]   High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm [J].
Alibart, Fabien ;
Gao, Ligang ;
Hoskins, Brian D. ;
Strukov, Dmitri B. .
NANOTECHNOLOGY, 2012, 23 (07)
[3]  
Burr GW, 2014, IEEE INT ELECT DEVIC, P1, DOI [10.1109/IEDM.2014.7047135, DOI 10.1109/IEDM.2014.7047135]
[4]   Synaptic behaviors and modeling of a metal oxide memristive device [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Kim, Kuk-Hwan ;
Sheridan, Patrick ;
Gaba, Siddharth ;
Lu, Wei .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :857-863
[5]  
Chen P.-Y., 2017, P IEEE INT EL DEV M
[6]   A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells [J].
Chen, Wenhao ;
Fang, Runchen ;
Balaban, Mehmet B. ;
Yu, Weijie ;
Gonzalez-Velo, Yago ;
Barnaby, Hugh J. ;
Kozicki, Michael N. .
NANOTECHNOLOGY, 2016, 27 (25)
[7]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[8]  
Gao B., 2017, P IEEE INT EL DEV M
[9]   Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems [J].
Gao, Bin ;
Bi, Yingjie ;
Chen, Hong-Yu ;
Liu, Rui ;
Huang, Peng ;
Chen, Bing ;
Liu, Lifeng ;
Liu, Xiaoyan ;
Yu, Shimeng ;
Wong, H. -S. Philip ;
Kang, Jinfeng .
ACS NANO, 2014, 8 (07) :6998-7004
[10]  
Goux L., 2013, S VLSI TECHN, pT162