GENERALIZED COFINITELY SEMIPERFECT MODULES

被引:0
作者
Kosan, M. Tamer [1 ]
机构
[1] Gebze Inst Technol, Fac Sci, Dept Math, Cayirova Campus, TR-41400 Gebze, Turkey
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2009年 / 5卷
关键词
Cofinite submodule; generalized supplement submodule; generalized projective cover; semiperfect module;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we define generalized (amply) cofinitely supplemented modules, and generalized circle plus-cofinitely supplemented modules are defined as a generalization of (amply) cofinitely supplemented modules and circle plus-cofinitely supplemented modules, respectively, and show, among others, the following results: (1) The class of generalized cofinitely supplemented modules is closed under taking homomorphic images, generalized covers and arbitrary direct sums. (2) Any finite direct sum of generalized circle plus-cofinitely supplemented modules is a generalized circle plus-cofinitely supplemented module. (3) M is a generalized cofinitely semiperfect module if and only if M is a generalized cofinitely supplemented - module by supplements which have generalized projective covers.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 14 条
  • [1] Modules whose maximal submodules have supplements
    Alizade, R
    Bilhan, G
    Smith, PF
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) : 2389 - 2405
  • [2] Anderson F.W., 1992, RINGS CATEGORIES MOD, Vsecond
  • [3] Azumaya G., 1992, P BIENN OH DEN C MAY, V1993, P28
  • [4] ON A RECENT GENERALIZATION OF SEMIPERFECT RINGS
    Buyukasik, Engin
    Lomp, Christian
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (02) : 317 - 325
  • [5] Cofinitely semiperfect modules
    Çalisici, H
    Pancar, A
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (02) : 359 - 363
  • [6] Kasch F., 1982, MODULES AND RINGS
  • [7] Kosan M. T., 2004, COMMUN FS U ANK A, V53, P21
  • [8] Leghwel A., 2006, FAR E J MATH, V20, P341
  • [9] Mohammed S. H., 1990, LONDON MATH SOC LN
  • [10] Smith P. F., 1992, RING THEORY, P302