WEAK CONVERGENCE THEOREMS FOR 2-GENERALIZED HYBRID MAPPINGS AND EQUILIBRIUM PROBLEMS

被引:6
作者
Alizadeh, Sattar [1 ]
Moradlou, Fridoun [2 ]
机构
[1] Islamic Azad Univ, Marand Branch, Dept Math, Marand, Iran
[2] Sahand Univ Technol, Dept Math, Tabriz, Iran
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2016年 / 31卷 / 04期
关键词
equilibrium problem; fixed point; Hilbert space; weak convergence;
D O I
10.4134/CKMS.c150232
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new modified Ishikawa iteration for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of 2-generalized hybrid mappings in a Hilbert space. Our results generalize and improve some existing results in the literature. A numerical example is given to illustrate the usability of our results.
引用
收藏
页码:765 / 777
页数:13
相关论文
共 28 条
[1]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[2]   A Strong Convergence Theorem for Equilibrium problems and Generalized Hybrid mappings [J].
Alizadeh, Sattar ;
Moradlou, Fridoun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) :379-390
[3]   WEAK AND STRONG CONVERGENCE THEOREMS FOR m-GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES [J].
Alizadeh, Sattar ;
Moradlou, Fridoun .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) :315-328
[4]  
Blum E., 1994, MATH STUDENT, V63, P123
[5]   An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings [J].
Ceng, L. -C. ;
Al-Homidan, S. ;
Ansari, Q. H. ;
Yao, J. -C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :967-974
[6]   A hybrid iterative scheme for mixed equilibrium problems and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :186-201
[7]   An example on the Mann iteration method for Lipschitz pseudocontractions [J].
Chidume, CE ;
Mutangadura, SA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2359-2363
[8]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[9]  
Flam SD, 1997, MATH PROGRAM, V78, P29
[10]   EXAMPLE CONCERNING FIXED-POINTS [J].
GENEL, A ;
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (01) :81-92