SEMIPARAMETRIC LEAST-SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS

被引:709
作者
ICHIMURA, H
机构
[1] University of Minnesota, Minneapolis
关键词
D O I
10.1016/0304-4076(93)90114-K
中图分类号
F [经济];
学科分类号
02 ;
摘要
For the class of single-index models, I construct a semiparametric estimator of coefficients up to a multiplicative constant that exhibits 1/square-root n-consistency and asymptotic normality. This class of models includes censored and truncated Tobit models, binary choice models, and duration models with unobserved individual heterogeneity and random censoring. I also investigate a weighting scheme that achieves the semiparametric efficiency bound.
引用
收藏
页码:71 / 120
页数:50
相关论文
共 22 条
[1]   CONSISTENCY IN NONLINEAR ECONOMETRIC-MODELS - A GENERIC UNIFORM LAW OF LARGE NUMBERS [J].
ANDREWS, DWK .
ECONOMETRICA, 1987, 55 (06) :1465-1471
[3]  
Brillinger D. R., 1983, FESTSCHRIFT EL LEHMA
[4]   DISTRIBUTION-FREE MAXIMUM-LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL [J].
COSSLETT, SR .
ECONOMETRICA, 1983, 51 (03) :765-782
[5]  
Feller W., 1968, INTRO PROBABILITY TH, V1st
[6]  
HAERDLE W, 1991, CORE9107 DISC PAP
[7]  
HALL P, 1991, OPTIMAL SEMIPARAMETR
[9]  
Ichimura H., 1991, NONPARAMETRIC SEMIPA, P3
[10]  
ICHIMURA H, 1990, UNPUB EFFICIENCY CON