QUASI-FACTORS OF ZERO ENTROPY SYSTEMS

被引:75
作者
GLASNER, E [1 ]
WEISS, B [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.2307/2152926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For minimal systems (X, T) of zero topological entropy we demonstrate the sharp difference between the behavior, regarding entropy, of the systems (M(X), T) and (2(X), T) induced by T on the spaces M(X) of probability measures on X and 2(X) of closed subsets of X. It is shown that the system (M(X), T) has itself zero topological entropy. Two proofs of this theorem are given. The first uses ergodic theoretic ideas. The second relies on the different behavior of the Banach spaces 1(1)(n) and 1(infinity)(n) with respect to the existence of almost Hilbertian central sections of the unit ball. In contrast to this theorem we construct a minimal system (X, T) of zero entropy with a minimal subsystem (Y, T) of (2(X), T) whose entropy is positive.
引用
收藏
页码:665 / 686
页数:22
相关论文
共 23 条
[1]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[2]   A DISJOINTNESS THEOREM INVOLVING TOPOLOGICAL-ENTROPY [J].
BLANCHARD, F .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (04) :465-478
[3]   ZERO ENTROPY FACTORS OF TOPOLOGICAL FLOWS [J].
BLANCHARD, F ;
LACROIX, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (03) :985-992
[4]  
Blanchard F., 1992, CONTEMP MATH, V135, P95
[5]  
BLANCHARD F, ENTROPY PAIRS MEASUR
[6]  
DENKER M, 1976, LECT NOTES MATH, V527
[7]   DIMENSION OF ALMOST SPHERICAL SECTIONS OF CONVEX BODIES [J].
FIGIEL, T ;
LINDENSTRAUSS, J ;
MILMAN, VD .
ACTA MATHEMATICA, 1977, 139 (1-2) :53-94
[8]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[9]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[10]  
FURSTENBERG H., 1967, MATH SYSTEMS THEORY, V1, P1, DOI [10.1007/BF01692494, DOI 10.1007/BF01692494]