SCHLESINGER TRANSFORMS FOR THE DISCRETE PAINLEVE-IV EQUATION

被引:17
作者
TAMIZHMANI, KM
GRAMMATICOS, B
RAMANI, A
机构
[1] UNIV PARIS 07,LPN,F-75251 PARIS 05,FRANCE
[2] ECOLE POLYTECH,CPT,CNRS,UPR 14,F-91128 PALAISEAU,FRANCE
关键词
D O I
10.1007/BF00760858
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an auto-Backlund transformation for the discrete Painleve IV equation and use it in order to derive Schlesinger transformations for the same equation as well as particular solutions in perfect analogy to the continuous case.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 16 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   ON A UNIFIED APPROACH TO TRANSFORMATIONS AND ELEMENTARY SOLUTIONS OF PAINLEVE EQUATIONS [J].
FOKAS, AS ;
ABLOWITZ, MJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (11) :2033-2042
[3]   A METHOD OF LINEARIZATION FOR PAINLEVE EQUATIONS - PAINLEVE-IV, PAINLEVE-V [J].
FOKAS, AS ;
MUGAN, U ;
ABLOWITZ, MJ .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 30 (03) :247-283
[4]   DO INTEGRABLE MAPPINGS HAVE THE PAINLEVE PROPERTY [J].
GRAMMATICOS, B ;
RAMANI, A ;
PAPAGEORGIOU, V .
PHYSICAL REVIEW LETTERS, 1991, 67 (14) :1825-1828
[5]  
GRAMMATICOS B, 1992, CONTRIBUTION NATO AS
[6]  
GROMAK VA, 1990, ANAL SOLUTIONS PAINL, V7
[7]  
Ince E.L., 1956, ORDINARY DIFFERENTIA
[8]   MONODROMY PERSERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .2. [J].
JIMBO, M ;
MIWA, T .
PHYSICA D, 1981, 2 (03) :407-448
[9]   NONLINEAR NONAUTONOMOUS DISCRETE DYNAMIC-SYSTEMS FROM A GENERAL DISCRETE ISOMONODROMY PROBLEM [J].
JOSHI, N ;
BURTONCLAY, D ;
HALBURD, RG .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 26 (02) :123-131