2 INTERPRETATIONS OF QUANTUM-MECHANICS .1.

被引:1
作者
WEINGARTEN, D
机构
[1] UNIV COPENHAGEN, NIELS BOHR INST, COPENHAGEN, DENMARK
[2] UNIV PARIS 11, CNRS, LAB PHYS THEORIQUE & PARTICULES ELEMENTAIRES, ORSAY, FRANCE
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 1974年 / B 22卷 / 02期
关键词
D O I
10.1007/BF02726594
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:293 / 327
页数:35
相关论文
共 50 条
[41]   THEORY OF MEASUREMENT IN QUANTUM-MECHANICS - MECHANISM OF REDUCTION OF WAVE PACKET .1. [J].
MACHIDA, S ;
NAMIKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (05) :1457-1473
[42]   LIE STRUCTURES IN PARASUPERSYMMETRIC QUANTUM-MECHANICS .1. THE STANDARD SUPERSYMMETRIZATION PROCEDURE [J].
BECKERS, J ;
DEBERGH, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) :1808-1814
[43]   QUANTUM-MECHANICS AS A MULTIDIMENSIONAL ERMAKOV THEORY .1. TIME INDEPENDENT SYSTEMS [J].
LEE, RA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03) :535-546
[44]   ALGEBRAS OF DISTRIBUTIONS SUITABLE FOR PHASE-SPACE QUANTUM-MECHANICS .1. [J].
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :869-879
[45]   MALLIAVIN CALCULUS AND EUCLIDEAN QUANTUM-MECHANICS .1. FUNCTIONAL-CALCULUS [J].
CRUZEIRO, AB ;
ZAMBRINI, JC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (01) :62-95
[46]   THE 1/N EXPANSION IN QUANTUM-MECHANICS [J].
VAINBERG, VM ;
MUR, VD ;
POPOV, VS ;
SERGEEV, AV ;
SHCHEBLYKIN, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (03) :269-278
[47]   QUANTUM-MECHANICS AND NILPOTENT GROUPS .1. THE CURVED MAGNETIC-FIELD [J].
JORGENSEN, PET ;
KLINK, WH .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1985, 21 (05) :969-999
[48]   QUANTUM-MECHANICS IN PHASE SPACE .1. UNICITY OF WIGNER DISTRIBUTION FUNCTION [J].
KRUGER, JG ;
POFFYN, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (01) :84-100
[49]   CONDITIONAL PROBABILITIES IN QUANTUM-MECHANICS .1. CONDITIONING WITH RESPECT TO A SINGLE EVENT [J].
CASSINELLI, G ;
ZANGHI, N .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 73 (02) :237-245
[50]   A SOLUBLE MODEL FOR SCATTERING AND DECAY IN QUATERNIONIC QUANTUM-MECHANICS .1. DECAY [J].
HORWITZ, LP .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (06) :2743-2760