THE NUMBER OF ZERO SUMS MODULO M IN A SEQUENCE OF LENGTH N

被引:9
作者
KISIN, M
机构
[1] Department of Mathematics, Princeton University, Princeton, N.J. 08544-1000, Fine Hall Washington Road
关键词
D O I
10.1112/S0025579300007257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a result related to the Erdos-Ginzburg-Ziv theorem: Let p and q be primes, alpha a positive integer, and m is-an-element-of {p(alpha), p(alpha)q}. Then for any sequence of integers c = {c1, c2, ..., c(n)} there are at least [GRAPHICS] subsequences of length m, whose terms add up to 0 modulo m (Theorem 8). We also show why it is unlikely that the result is true for any m not of the form p(alpha) or p(alpha)q (Theorem 9).
引用
收藏
页码:149 / 163
页数:15
相关论文
共 5 条
  • [1] ON THE ERDOS-GINZBURG-ZIV THEOREM AND THE RAMSEY NUMBERS FOR STARS AND MATCHINGS
    BIALOSTOCKI, A
    DIERKER, P
    [J]. DISCRETE MATHEMATICS, 1992, 110 (1-3) : 1 - 8
  • [2] BIALOSTOCKI A, 1989, SOME COMBINATORIAL N
  • [3] Davenport H., 1935, J LOND MATH SOC, V10, P30, DOI DOI 10.1112/JLMS/S1-10.37.30
  • [4] ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
  • [5] FUREDI Z, UNPUB ZERO SUM MULTI