FUNCTIONAL SEPARATION OF VARIABLES FOR LAPLACE EQUATIONS IN 2 DIMENSIONS

被引:41
作者
MILLER, W
RUBEL, LA
机构
[1] UNIV MINNESOTA, INST MATH & APPLICAT, MINNEAPOLIS, MN 55455 USA
[2] UNIV ILLINOIS, DEPT MATH, URBANA, IL 61801 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 08期
关键词
D O I
10.1088/0305-4470/26/8/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We say that a solution PSI of a partial differential equation in two real variables x1, x2 is functionally separable in these variables if PSI(x1, x2) = phi(A(x1) + B(x2)) for single variable functions phi, A, B such that phi'A'B' not-equal 0. In this paper we classify all possibilities for regular functional separation in local coordinates for equations of the form DELTA2PSI = f(PSI, x1, x2) where DELTA2 is the Laplace-Beltrami operator on a two-dimensional Riemannian or pseudo-Riemannian space. If the dependence of f on x1, x2 is non-trivial then separation can occur for conformal Cartesian coordinates on any space. If f = G(PSI) then for orthogonal coordinates we find that true functional separation, i.e. separation other than additive or multiplicative, occurs precisely for Cartesian coordinates in the Euclidean and pseudo-Euclidean planes. (The sine-Gordon equation provides an example of this separation.) For many of these cases the separated solutions A, B can be expressed in terms of elliptic functions. For non-orthogonal coordinates and f = G(PSI) true functional separation occurs precisely for Cartesian coordinates in the pseudo-Euclidean plane and for a coordinate system on the hyperboloid of one sheet, a pseudo-Riemannian space of constant curvature.
引用
收藏
页码:1901 / 1913
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 1982, SPECTRAL TRANSFORM S
[2]  
Eisenhart L. P., 1949, RIEMANNIAN GEOMETRY
[3]  
Kalnins E.G., 1986, PITMAN MONOGRAPHS SU, V28
[4]   WAVE-EQUATION, O(2,2), AND SEPARATION OF VARIABLES ON HYPERBOLOIDS [J].
KALNINS, EG ;
MILLER, W .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 79 :227-256
[5]   SEPARATION OF VARIABLES FOR LAPLACE EQUATION DELTA PSI + KAPPA PSI = 0 IN 2-DIMENSIONAL AND 3-DIMENSIONAL MINKOWSKI SPACE [J].
KALNINS, EG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (02) :340-374
[6]   DIFFERENTIAL-STACKEL MATRICES [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (07) :1560-1565
[7]   GENERALIZED STACKEL MATRICES [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2168-2173
[8]  
Lamb G. L., 1980, ELEMENTS SOLITONS TH, DOI [10.1002/zamm.19810611116, DOI 10.1002/ZAMM.19810611116]
[10]  
LAMB GL, 1976, LECT NOTES MATH, V515, P69