ESTIMATING A REGRESSION FUNCTION

被引:101
作者
VANDEGEER, S
机构
关键词
D O I
10.1214/aos/1176347632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:907 / 924
页数:18
相关论文
共 19 条
[1]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[2]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[3]   ESTIMATING A DENSITY UNDER ORDER RESTRICTIONS - NONASYMPTOTIC MINIMAX RISK [J].
BIRGE, L .
ANNALS OF STATISTICS, 1987, 15 (03) :995-1012
[4]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[5]  
DUDLEY RM, 1984, LECT NOTES MATH, P1
[6]   SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
GINE, E ;
ZINN, J .
ANNALS OF PROBABILITY, 1984, 12 (04) :929-989
[7]  
GROENEBOOM P, 1985, P BERK C HON J NEYM, V0002, P00539
[8]  
Kolmogorov AN, 1961, AM MATH SOC TRANSL, V2, P277
[9]  
KUELBS J, 1978, T AM MATH SOC, V240, P145
[10]  
LeCam L., 1986, ASYMPTOTIC METHODS S