Oder-bounded sets in locally solid Riesz spaces

被引:3
|
作者
Khurana, Surjit Singh [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
来源
NOTE DI MATEMATICA | 2008年 / 28卷 / 01期
关键词
locally solid; band; Lebesgue property; Fatou property; order intervals; order direct sum;
D O I
10.1285/i15900932v28n1p119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be Dedekind complete, Hausdorff, locally solid Riesz space and P an order bounded interval. We give a new proofs of Nakano's theorem, that if E has Fatou property, P is complete, that the restrictions on P, of all topologies on E having Lebesgue property, are identical; we also give a measure-theoretic proof of the result that if (E, T) is a Dedekind complete, Hausdorff, locally convex-solid Riesz space with Lebesque property, then P is weakly compact and E is a regular Riesz subspace of E-11
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条