SPECTRAL INEQUALITIES FOR COMPACT INTEGRAL-OPERATORS ON BANACH FUNCTION-SPACES

被引:8
作者
DRNOVSEK, R
机构
[1] Institute of Mathematics, Physics and Mechanics, 61111, Ljubljana
关键词
D O I
10.1017/S0305004100071279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article generalizes some spectral inequalities for non-negative matrices (see [2] and [3]) to compact integral operators with non-negative kernels defined on Banach function spaces. The spectral radius of a sum of such operators is estimated under certain conditions and a generalization of this inequality is given. An inequality for the spectral radius of a compact integral operator with the kernel equal to a weighted geometric mean of non-negative kernels is also proved.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 6 条
[1]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[2]   NONNEGATIVE MATRICES, ZERO PATTERNS, AND SPECTRAL INEQUALITIES [J].
ELSNER, L ;
JOHNSON, CR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 120 :225-236
[3]  
Elsner L., 1988, LINEAR MULTILINEAR A, V24, P1, DOI DOI 10.1080/03081088808817892
[4]  
KREIN MG, 1962, FUNCTIONAL ANAL MEAS, P199
[5]  
Luxemburg W., 1955, BANACH FUNCTION SPAC
[6]  
Zaanen A. C., 1983, RIESZ SPACES