REGULARIZED DETERMINANTS FOR PSEUDODIFFERENTIAL-OPERATORS IN VECTOR-BUNDLES OVER S(1)

被引:10
作者
BURGHELEA, D
FRIEDLANDER, L
KAPPELER, T
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
[2] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
关键词
MSC1991:; Primary; 34L05; Secondary; 35S05;
D O I
10.1007/BF01205290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We express the zeta-regularized determinant of an elliptic pseudodifferential operator A over S1 with strongly invertible principal symbol in terms of the Fredholm determinant of an operator of determinant class, canonically associated to A, and local invariants. These invariants are given by explicit formulae involving the principal and subprincipal symbol of the operator. We remark that, generically, elliptic pseudodifferential operators have a strongly invertible principal symbol.
引用
收藏
页码:496 / 513
页数:18
相关论文
共 9 条
[1]   Singular points of ordinary linear differential equations [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1909, 10 (1-4) :436-470
[2]   ON THE DETERMINANT OF ELLIPTIC DIFFERENTIAL AND FINITE-DIFFERENCE OPERATORS IN VECTOR-BUNDLES OVER S1 [J].
BURGHELEA, D ;
FRIEDLANDER, L ;
KAPPELER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :1-18
[3]  
CLANCEY K, 1981, FACTORIZATION MATRIX
[4]  
FELDMAN IA, 1974, TRANSLATION MATH MON, V41
[5]  
Friedlander L., 1989, THESIS MIT
[6]  
PRESLEY A, 1986, LOOP GROUPS
[7]  
SEELEY RT, 1967, SINGULAR INTEGRALS, V10, P288, DOI DOI 10.1090/PSPUM/010/0237943
[8]  
Titchmarsh E. C, 1986, RIEMANN ZETA FUNCTIO
[9]  
[No title captured]