On (r; s)-Fuzzy Domination in Fuzzy Graphs

被引:1
作者
Arumugam, S. [1 ]
Bhutani, Kiran [2 ]
Sathikala, L. [3 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, Tamil Nadu, India
[2] Catholic Univ Amer, Dept Math, Washington, DC 20064 USA
[3] Ramco Inst Technol, Dept Math, Rajapalayam 626117, Tamil Nadu, India
关键词
Fuzzy graph; (r; s)-fuzzy domination; s)-fuzzy irredundance; s)-fuzzy independence; s)-fuzzy domination chain;
D O I
10.1142/S1793005716500010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (sigma, mu) be a fuzzy graph on a finite set V : Let r; s epsilon [0; 1] and r < s: A fuzzy subset sigma(1) of sigma is called an (r; s)-fuzzy dominating set (r, s)-FD set) of G if (Sigma(mu(uv)>= r) sigma 1(u)) + sigma(1) (v) >= s for all v is an element of V. Then gamma(r; s) = min(sigma 1) [Sigma(x is an element of V) sigma(1) (x)] is called the (r, s)- fuzzy domination number of G; where the minimum is taken over all (r, s)-FD sets sigma(1) of G: In this paper we initiate a study of this parameter and other related concepts such as (r, s)-fuzzy irredundance and (r, s)-fuzzy independence. We obtain the dr; s_- fuzzy domination chain which is analogous to the domination chain in crisp graphs.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 10 条
[1]  
Chartrand G., 2005, GRAPHS DIGRAPHS
[2]  
Cockayne E. J., 1978, CANAD MATH B, V21, P461
[3]   THE SEQUENCE OF UPPER AND LOWER DOMINATION, INDEPENDENCE AND IRREDUNDANCE NUMBERS OF A GRAPH [J].
COCKAYNE, EJ ;
MYNHARDT, CM .
DISCRETE MATHEMATICS, 1993, 122 (1-3) :89-102
[4]   Using maximality and minimality conditions to construct inequality chains [J].
Cockayne, EJ ;
Hattingh, JH ;
Hedetniemi, SM ;
Hedetniemi, ST ;
McRae, AA .
DISCRETE MATHEMATICS, 1997, 176 (1-3) :43-61
[5]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT, V28
[6]  
HEDETNIEMI SM, 1987, URI014 CLEMS U DEP M
[7]  
Mordeson J.N., 2000, FUZZY GRAPHS FUZZY H
[8]  
Rosenfield A., 1975, FUZZY SETTHEIR APP, P77, DOI [10.1016/B978-0-12-775260-0.50008-6, DOI 10.1016/B978-0-12-775260-0.50008-6]
[9]  
Scheinerman E.R., 1997, FRACTIONAL GRAPH THE
[10]   Domination in fuzzy graphs - I [J].
Somasundaram, A ;
Somasundaram, S .
PATTERN RECOGNITION LETTERS, 1998, 19 (09) :787-791