17 PRIMES IN ARITHMETIC PROGRESSION

被引:0
|
作者
WEINTRAUB, S [1 ]
机构
[1] CUNY,QUEENS COLL,FLUSHING,NY 11367
关键词
D O I
10.2307/2006135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1030 / 1030
页数:1
相关论文
共 50 条
  • [1] Primes in arithmetic progression
    Dani, SG
    CURRENT SCIENCE, 2004, 87 (02): : 134 - 134
  • [3] PRIMES IN AN ARITHMETIC-PROGRESSION
    ABBOTT, WL
    BLOOM, DM
    ZIPPERER, JB
    BREUSCH, R
    CARTER, FS
    CHRISTOPHER, J
    COVILL, RJ
    EISNER, M
    FICKETT, J
    FILESTA, M
    FOSTER, LL
    FRANCESCHINE, N
    JAGER, T
    KUIPERS, L
    KWONG, MK
    LESSELLS, GS
    METZGER, J
    MIKU, N
    SHALLITT, J
    SHULMANG
    SILVERMAN, J
    SPEARMAN, B
    TROST, E
    WIENER, J
    SPELLMAN, J
    YANGBO, Y
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 406 - 406
  • [4] CONSECUTIVE PRIMES IN ARITHMETIC PROGRESSION
    LANDER, LJ
    PARKIN, TR
    MATHEMATICS OF COMPUTATION, 1967, 21 (99) : 489 - &
  • [5] On the second moment for primes in an arithmetic progression
    Goldston, DA
    Yildirim, CY
    ACTA ARITHMETICA, 2001, 100 (01) : 85 - 104
  • [6] Sparser variance for primes in arithmetic progression
    Roger Baker
    Tristan Freiberg
    Monatshefte für Mathematik, 2018, 187 : 217 - 236
  • [7] 18 PRIMES IN ARITHMETIC-PROGRESSION
    PRITCHARD, PA
    MATHEMATICS OF COMPUTATION, 1983, 41 (164) : 697 - 697
  • [8] SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION
    Bruedern, J.
    Wooley, T. D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02): : 289 - 305
  • [9] Ten consecutive primes in arithmetic progression
    Dubner, H
    Forbes, T
    Lygeros, N
    Mizony, M
    Nelson, H
    Zimmermann, P
    MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 1323 - 1328
  • [10] 22 PRIMES IN ARITHMETIC-PROGRESSION
    PRITCHARD, PA
    MORAN, A
    THYSSEN, A
    MATHEMATICS OF COMPUTATION, 1995, 64 (211) : 1337 - 1339