CLASS OF EXACTLY SOLVABLE FOKKER PLANCK EQUATIONS

被引:17
|
作者
SANMIGUEL, M
机构
来源
关键词
D O I
10.1007/BF01323507
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [31] A class of exactly solvable matrix models
    Iachello, F
    Del Sol Mesa, A
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 25 (04) : 345 - 363
  • [32] Class of exactly solvable pairing models
    Dukelsky, J
    Esebbag, C
    Schuck, P
    PHYSICAL REVIEW LETTERS, 2001, 87 (06) : 664031 - 664034
  • [33] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [34] Exactly solvable Fokker-Planck equation with time-dependent nonlinear drift and diffusion coefficients - the Lie-algebraic approach
    Lo, C. F.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (01): : 131 - 136
  • [35] STOCHASTIC CHAOS IN A CLASS OF FOKKER-PLANCK EQUATIONS DERIVED FROM POPULATION DYNAMICS
    Moussiliou, S.
    Massou, S.
    Mounmouni, S.
    Tchoffo, M.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 89 - 111
  • [36] Exactly solvable Fokker-Planck equation with time-dependent nonlinear drift and diffusion coefficients – the Lie-algebraic approach
    C. F. Lo
    The European Physical Journal B, 2011, 84 : 131 - 136
  • [37] Harnack inequality for a class of Kolmogorov–Fokker–Planck equations in non-divergence form
    Farhan Abedin
    Giulio Tralli
    Archive for Rational Mechanics and Analysis, 2019, 233 : 867 - 900
  • [38] Analysis of the Chang-Cooper discretization scheme for a class of Fokker-Planck equations
    Mohammadi, Masoumeh
    Borzi, Alfio
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 271 - 288
  • [39] Nonlocal Approximations to Fokker-Planck Equations
    Molino, Alexis
    Rossi, Julio D.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 35 - 60
  • [40] BOLTZMANN-FOKKER-PLANCK EQUATIONS.
    Ligou, Jacques
    Transport Theory and Statistical Physics, 1985, 15 (6-7): : 985 - 1005