THE HENON-HEILES SYSTEM REVISITED

被引:126
|
作者
FORDY, AP [1 ]
机构
[1] UNIV LEEDS,CTR NONLINEAR STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
来源
PHYSICA D | 1991年 / 52卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90122-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The known integrable cases of the Henon-Heiles system are shown to be closely related to the stationary flows of the known (and only) integrable fifth-order (single component and polynomial) nonlinear evolution equations. This is further evidence that these are the only integrable cases of the Henon-Heiles system. Lax pairs are deduced for each of the integrable cases and used to construct the constants of motion. A curious Lax operator recently found by the Painleve method is explained.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 50 条
  • [1] ON THE INTEGRABILITY OF THE HENON-HEILES SYSTEM
    GRAMMATICOS, B
    DORIZZI, B
    PADJEN, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1982, 294 (09): : 541 - 544
  • [2] An extended Henon-Heiles system
    Hone, A. N. W.
    Novikov, V.
    Verhoeven, C.
    PHYSICS LETTERS A, 2008, 372 (09) : 1440 - 1444
  • [3] Integrability of the Henon-Heiles system
    Smirnov, RG
    APPLIED MATHEMATICS LETTERS, 1998, 11 (03) : 71 - 74
  • [4] ULTRASONIC SOLITONS AND THE HENON-HEILES SYSTEM
    GAIDIDEI, YB
    EILBECK, JC
    CHRISTIANSEN, PL
    ENOLSKY, VZ
    UKRAINSKII FIZICHESKII ZHURNAL, 1992, 37 (12): : 1778 - 1785
  • [5] HAMILTONIAN SYMMETRIES OF THE HENON-HEILES SYSTEM
    FORDY, AP
    PHYSICS LETTERS A, 1983, 97 (1-2) : 21 - 23
  • [6] A new discrete Henon-Heiles system
    Common, AK
    Hone, ANW
    Musette, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 : 27 - 40
  • [7] Some remarks on the Henon-Heiles system
    Cret, Florian
    Khashan, Mohammed
    Puta, Mircea
    Acta Physica Hungarica New Series Heavy Ion Physics, 10 (04): : 379 - 382
  • [8] NOTE ON THE GENERALIZED HENON-HEILES SYSTEM
    GAVRILOV, L
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1988, 41 (08): : 29 - 32
  • [9] ON THE ANALYTIC STRUCTURE OF THE HENON-HEILES SYSTEM
    CHANG, YF
    TABOR, M
    WEISS, J
    CORLISS, G
    PHYSICS LETTERS A, 1981, 85 (04) : 211 - 214
  • [10] Coriolis coupling in a Henon-Heiles system
    Salas, J. P.
    Lanchares, V.
    Inarrea, M.
    Farrelly, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 111