A CONDITION FOR A HAMILTONIAN BIPARTITE GRAPH TO BE BIPANCYCLIC

被引:2
作者
AMAR, D
机构
[1] LABRI, U.A. C.N.R.S. 726, Université Bordeaux I, 33405 Talence Cedex, 351, Cours de la Libération
关键词
D O I
10.1016/0012-365X(92)90116-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a hamiltonian bipartite graph of order 2n and let C = (x1, y1, x2, y2, . . . , x(n), y(n), x1) be a hamiltonian cycle of G. G is said to be bipancyclic if it contains a cycle of length 2l, for every 1, 2 less-than-or-equal-to l less-than-or-equal-to n. Suppose the vertices x, and X2 are such that d(x1) + d(X2) greater-than-or-equal-to n + 1. Then G is either: (1) bipancyclic, (2) missing a 4-cycle (then n is odd and the structure of G is known), (3) missing a (n + 1)-cycle (then n is odd and the structure of G is known).
引用
收藏
页码:221 / 227
页数:7
相关论文
共 13 条
  • [1] HAMILTONIAN PANCYCLIC GRAPHS
    AMAR, D
    FLANDRIN, E
    FOURNIER, I
    GERMA, A
    [J]. DISCRETE MATHEMATICS, 1983, 46 (03) : 327 - 327
  • [2] THE GENG-HUA FAN CONDITIONS FOR PANCYCLIC OR HAMILTON-CONNECTED GRAPHS
    BENHOCINE, A
    WOJDA, AP
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (02) : 167 - 180
  • [3] Bondy J.A., 1971, J COMB THEORY B, V11, P80
  • [4] BONDY JA, 1973, C MATH SOC JANOS BOL, V10
  • [5] BRAVO M, PATHS CYCLES CIRCUIT
  • [6] Chvatal V., 1972, J COMBINATORIAL TH B, V12, P163, DOI DOI 10.1016/0095-8956(72)90020-2
  • [7] Dirac G. A., 1952, P LOND MATH SOC, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [8] FAN GH, 1983, J COMBIN THOERY B, V37, P221
  • [9] MITCHEM J, 1982, J GRAPH THEOR, V6, P429
  • [10] ON HAMILTONIAN BIPARTITE GRAPHS
    MOON, J
    MOSER, L
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) : 163 - &