REPRESENTATION FORMULAS AND WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS

被引:116
作者
FRANCHI, B
LU, G
WHEEDEN, RL
机构
[1] WRIGHT STATE UNIV,DEPT MATH,DAYTON,OH 45435
[2] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
HORMANDER VECTOR FIELDS; WEIGHTED POINCARE INEQUALITIES; REPRESENTATION FORMULAS; ISOPERIMETRIC INEQUALITIES;
D O I
10.5802/aif.1466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive weighted Poincare inequalities for vector fields which satisfy the Hormander condition, including new results in the unweighted case. We also derive a new integral representation formula for a function in terms of the vector fields applied to the function. As a corollary of the L(1) versions of Poincare's inequality, we obtain relative isoperimetric inequalities.
引用
收藏
页码:577 / 604
页数:28
相关论文
共 37 条
[1]  
BIROLI M, IN PRESS ATTI ACCAD
[2]  
BIROLI M, 1994, IN PRESS FEB P C POT
[3]  
BOJARSKI B, 1989, LECT NOTES MATH, V1351, P52
[4]  
BUCKLEY SN, UNPUB
[5]  
Busemann H., 1955, GEOMETRY GEODESICS
[6]   INEQUALITIES FOR MAXIMAL FUNCTION RELATIVE TO A METRIC [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1976, 57 (03) :297-306
[7]  
Capogna L., 1993, REND SEM MAT U POLIT, V51, P361
[8]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[9]  
CHUA SK, IN PRESS P AM MATH S
[10]  
COULHON T, IN PRESS J FUNCT ANA