Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy

被引:58
作者
Xu, Zheng-Long [1 ]
Cao, Ke [2 ]
Abouali, Sara [1 ]
Garakani, Mohammad Akbari [1 ]
Huang, Jiaqiang [1 ]
Huang, Jian-Qiu [1 ]
Heidari, Elham Kamali [1 ]
Wang, Hongtao [2 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Kowloon, Hong Kong, Peoples R China
[2] Zhejiang Univ, Inst Appl Mech, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Carbon coating; Silicon particles; Li-ion batteries; in-situ TEM;
D O I
10.1016/j.ensm.2016.01.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon coated Si (Si/C) composites with a high Si content of 81 wt% are synthesized by one-pot carbonization of the mixture containing commercial Si particles and polyvinylidene fluoride (PVDF) at an optimized temperature. The Si/C electrodes deliver a high cyclic capacity of 2003 mA h g(-1) at 0.5 A g(-1) after 50 cycles and an enhanced rate capability of similar to 750 mA h g(-1) at 4 A g(-1) for over 200 cycles. The effect of ultrathin carbon coating on lithiation mechanisms of Si particles is evaluated using the in-situ transmission electron microscopy (TEM). It is revealed that the carbon-coated Si particles undergo an isotropic to anisotropic transition during the initial lithiation, whereas such transition is not observed for the uncoated Si particle. The lithiation rate of Si/C is 3-4.5 times faster than that of uncoated Si with the same diameter, a testament to high rate capacities of Si/C in real batteries. The flexible, amorphous carbon coating favorably alters the damage mode of Si particles from pulverization by multiple cracking to fracture by a single crack. The above findings offer fundamental understanding and practical guideline for designing carbon coatings of Si-based electrodes with much enhanced electrochemical performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 54 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[4]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[5]  
Duca MD, 1998, J APPL POLYM SCI, V67, P2125, DOI 10.1002/(SICI)1097-4628(19980328)67:13<2125::AID-APP2>3.0.CO
[6]  
2-G
[7]   Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries [J].
Gu, Meng ;
Xiao, Xing-Cheng ;
Liu, Gao ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Liu, Jun ;
Browning, Nigel D. ;
Wang, Chong-Min .
SCIENTIFIC REPORTS, 2014, 4
[8]   In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix [J].
Gu, Meng ;
Li, Ying ;
Li, Xiaolin ;
Hu, Shenyang ;
Zhang, Xiangwu ;
Xu, Wu ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2012, 6 (09) :8439-8447
[9]   Carbon scaffold structured silicon anodes for lithium-ion batteries [J].
Guo, Juchen ;
Chen, Xilin ;
Wang, Chunsheng .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) :5035-5040
[10]   Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries [J].
Hassan, Fathy M. ;
Chabot, Victor ;
Elsayed, Abdel Rahman ;
Xiao, Xingcheng ;
Chen, Zhongwei .
NANO LETTERS, 2014, 14 (01) :277-283