FEASIBILITY TESTING FOR SYSTEMS OF REAL QUADRATIC EQUATIONS

被引:42
作者
BARVINOK, AI
机构
[1] Department of Mathematics, Royal Institute of Technology, Stockholm
关键词
D O I
10.1007/BF02573959
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of deciding whether a given system of quadratic homogeneous equations over the reals has nontrivial solution. We design an algorithm which, for a fixed number of equations, uses a number of arithmetic operations bounded by a polynomial in the number of variables only.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1986, J SOVIET MATH, DOI DOI 10.1007/BF01095638
[2]  
BARVINOK AI, 1992, 24TH P THEOR COMP, P126
[3]  
Chistov A., 1986, J SOVIET MATH, V34, P1838, DOI DOI 10.1007/BF01095643
[4]  
Collins G. E., 1982, Computing (Supplementum), P83
[5]  
Gessel Ira M., 1981, UTILITAS MATH, V19, P247
[6]   SOLVING SYSTEMS OF POLYNOMIAL INEQUALITIES IN SUBEXPONENTIAL TIME [J].
GRIGOREV, DY ;
VOROBJOV, NN .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) :37-64
[7]  
GRIGOREV DY, 1992, COMMUNICATION
[8]  
GRIGOREV DY, 1984, SOV MATH DOKL, V29, P380
[9]  
HADAMARD J, 1927, COURS ANAL, V1
[10]  
Halmos PR., 1982, HILBERT SPACE PROBLE