Polytopic observer design for LPV systems based on minimal convex polytope finding

被引:20
作者
Anstett, Floriane [1 ]
Millerioux, Gilles [1 ]
Bloch, Gerard [1 ]
机构
[1] Nancy Univ, CNRS, CRAN, ESSTIN, 2 Rue Jean Lamour, F-54519 Vandoeuvre Les Nancy, France
关键词
Linear Parameter Varying (LPV) systems; minimal convex polytope; polytopic observers; chaotic systems;
D O I
10.1260/174830109787186569
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Linear Parameter Varying (LPV) systems are models widely encountered in the engineering field. In this paper, a systematic method is provided to design a polytopic observer whose goal is to reconstruct the state of discrete-time LPV systems. The method incorporates in an original manner a minimal convex polytope finding and thereby confers efficiency to the reconstruction technique. The proposed approach is illustrated in the context of secure communications based on chaotic parameter modulation.
引用
收藏
页码:23 / 43
页数:21
相关论文
共 24 条
[1]   Computing the three-dimensional convex hull [J].
Allison, DCS ;
Noga, MT .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 103 (01) :74-82
[2]  
Anstett F, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 4, PROCEEDINGS, P728
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]   A NOTE ON FINDING EXTREME-POINTS IN MULTIVARIATE SPACE [J].
CHATTERJEE, S ;
CHATTERJEE, S .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1990, 10 (01) :87-92
[5]   Synchronization through filtering [J].
Cruz, C ;
Nijmeijer, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (04) :763-775
[6]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[7]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[8]  
Eddy W. F., 1977, ACM Transactions on Mathematical Software, V3, P398, DOI 10.1145/355759.355766
[9]   Adaptive observer-based synchronization for communication [J].
Fradkov, A ;
Nijmeijer, H ;
Markov, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12) :2807-2813
[10]  
Graham R. L., 1973, INFORM PROCESS LETT, V2, P132