POSITIVE-DEFINITE TOEPLITZ MATRICES, THE ARNOLDI PROCESS FOR ISOMETRIC OPERATORS, AND GAUSSIAN QUADRATURE ON THE UNIT-CIRCLE

被引:89
作者
GRAGG, WB [1 ]
机构
[1] USN,POSTGRAD SCH,DEPT MATH,MONTEREY,CA 93940
基金
美国国家科学基金会;
关键词
TOEPLITZ MATRICES; UNITARY HESSENBERG MATRICES; SZEGO POLYNOMIALS;
D O I
10.1016/0377-0427(93)90294-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the well-known Levinson algorithm for computing the inverse Cholesky factorization of positive definite Toeplitz matrices can be viewed as a special case of a more general process. The latter process provides a very efficient implementation of the Arnoldi process when the underlying operator is isometric. This is analogous with the case of Hermitian operators where the Hessenberg matrix becomes tridiagonal and results in the Hermitian Lanczos process. We investigate the structure of the Hessenberg matrices in the isometric case and show that simple modifications of them move all their eigenvalues to the unit circle. These eigenvalues are then interpreted as abscissas for analogs of Gaussian quadrature, now on the unit circle instead of the real line. The trapezoidal rule appears as the analog of the Gauss-Legendre formula.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 17 条
[1]  
ANDO T, 1970, ACTA SCI MATH, V31, P319
[2]  
[Anonymous], 1974, ROCKY MOUNTAIN J MAT
[4]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[5]  
Bauer F.L., 1960, NUMER MATH, V2, P42
[6]  
BULTHEEL A, 1979, TW44 KATH U LEUV APP
[7]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[8]  
CYBENKO G, 1984, SIAM J MATH ANAL, V15, P753, DOI 10.1137/0515059
[9]   THE NUMERICAL STABILITY OF THE LEVINSON-DURBIN ALGORITHM FOR TOEPLITZ-SYSTEMS OF EQUATIONS [J].
CYBENKO, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (03) :303-319
[10]  
Cybenko G., 1981, Circuit Theory and Design. Proceedings of the 1981 European Conference on Circuit Theory and Design, P379