ELLIPTIC ALGEBRAS AND EQUIVARIANT K-THEORY

被引:0
|
作者
GINZBURG, V [1 ]
VASSEROT, E [1 ]
机构
[1] ECOLE NORMALE SUPER, F-75231 PARIS 05, FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1994年 / 319卷 / 06期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a geometrical construction of an elliptic Lie algebra associated to A. A. Belavin classical r-matrix using some equivariant K-groups. This result extends the authors' similar constructions of Yangians and affine quantum groups.
引用
收藏
页码:539 / 543
页数:5
相关论文
共 50 条
  • [21] EQUIVARIANT COMMUNICATION K-THEORY
    DAVYDOV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (06): : 90 - 93
  • [22] Equivariant eta forms and equivariant differential K-theory
    Liu, Bo
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2159 - 2206
  • [23] Equivariant eta forms and equivariant differential K-theory
    Bo Liu
    Science China Mathematics, 2021, 64 : 2159 - 2206
  • [24] FORGETFUL HOMOMORPHISMS IN EQUIVARIANT K-THEORY
    MATSUNAGA, H
    MINAMI, H
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1986, 22 (01) : 143 - 150
  • [25] Rigidity in equivariant algebraic K-theory
    Naumann, Niko
    Ravi, Charanya
    ANNALS OF K-THEORY, 2020, 5 (01) : 141 - 158
  • [26] Equivariant K-theory of quasitoric manifolds
    Dasgupta, Jyoti
    Khan, Bivas
    Uma, V.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [27] Equivariant eta forms and equivariant differential K-theory
    Bo Liu
    Science China(Mathematics), 2021, 64 (10) : 2159 - 2206
  • [28] Equivariant K-theory of toric orbifolds
    Sarkar, Soumen
    Uma, Vikraman
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (03) : 735 - 752
  • [29] The equivariant K-theory of toric varieties
    Au, Suanne
    Huang, Mu-Wan
    Walker, Mark E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 840 - 845
  • [30] Equivariant forms of connective K-theory
    Greenlees, JPC
    TOPOLOGY, 1999, 38 (05) : 1075 - 1092