Incorporating spatial dose metrics in machine learning-based normal tissue complication probability (NTCP) models of severe acute dysphagia resulting from head and neck radiotherapy

被引:33
作者
Dean, Jamie [1 ,2 ]
Wong, Kee [3 ]
Gay, Hiram [4 ]
Welsh, Liam [3 ]
Jones, Ann-Britt [3 ]
Schick, Ulricke [3 ]
Oh, Jung Hun [5 ]
Apte, Aditya [5 ]
Newbold, Kate [3 ,6 ]
Bhide, Shreerang [3 ,6 ]
Harrington, Kevin [3 ,6 ]
Deasy, Joseph [5 ]
Nutting, Christopher [3 ,6 ]
Gulliford, Sarah [1 ,2 ]
机构
[1] Inst Canc Res, Joint Dept Phys, London SM2 5NG, England
[2] Royal Marsden NHS Fdn Trust, London SM2 5NG, England
[3] Royal Marsden NHS Fdn Trust, Head & Neck Unit, Fulham Rd, London SW3 6JJ, England
[4] Washington Univ, Dept Radiat Oncol, Sch Med, St Louis, MO USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[6] Inst Canc Res, Div Radiotherapy & Imaging, Fulham Rd, London SW3 6JJ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.ctro.2017.11.009
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Severe acute dysphagia commonly results from head and neck radiotherapy (RT). A model enabling prediction of severity of acute dysphagia for individual patients could guide clinical decision-making. Statistical associations between RT dose distributions and dysphagia could inform RT planning protocols aiming to reduce the incidence of severe dysphagia. We aimed to establish such a model and associations incorporating spatial dose metrics. Models of severe acute dysphagia were developed using pharyngeal mucosa (PM) RT dose (dose-volume and spatial dose metrics) and clinical data. Penalized logistic regression (PLR), support vector classification and random forest classification (RFC) models were generated and internally (173 patients) and externally (90 patients) validated. These were compared using area under the receiver operating characteristic curve (AUC) to assess performance. Associations between treatment features and dysphagia were explored using RFC models. The PLR model using dose-volume metrics (PLRstandard) performed as well as the more complex models and had very good discrimination (AUC = 0.82) on external validation. The features with the highest RFC importance values were the volume, length and circumference of PM receiving 1 Gy/fraction and higher. The volumes of PM receiving 1 Gy/fraction or higher should be minimized to reduce the incidence of severe acute dysphagia. (C) 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and Oncology.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 71 条
[1]   Radiation-induced acute dysphagia [J].
Alterio, D. ;
Gerardi, M. A. ;
Cella, L. ;
Spoto, R. ;
Zurlo, V. ;
Sabbatini, A. ;
Fodor, C. ;
D'Avino, V. ;
Conson, M. ;
Valoriani, F. ;
Ciardo, D. ;
Pacelli, R. ;
Ferrari, A. ;
Maisonneuve, P. ;
Preda, L. ;
Bruschini, R. ;
Rocca, M. Cossu ;
Rondi, E. ;
Colangione, S. ;
Palma, G. ;
Dicuonzo, S. ;
Orecchia, R. ;
Sanguineti, G. ;
Jereczek-Fossa, B. A. .
STRAHLENTHERAPIE UND ONKOLOGIE, 2017, 193 (11) :971-981
[2]   Dose-volume response in acute dysphagia toxicity: Validating QUANTEC recommendations into clinical practice for head and neck radiotherapy [J].
Anderson, Nigel J. ;
Wada, Morikatsu ;
Schneider-Kolsky, Michal ;
Rolfo, Maureen ;
Joon, Daryl Lim ;
Khoo, Vincent .
ACTA ONCOLOGICA, 2014, 53 (10) :1305-1311
[3]   Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology [J].
Bentzen, Soren M. .
NATURE REVIEWS CANCER, 2006, 6 (09) :702-713
[4]   Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort [J].
Blanchard, Pierre ;
Wong, Andrew J. ;
Gunn, G. Brandon ;
Garden, Adam S. ;
Mohamed, Abdallah S. R. ;
Rosenthal, David I. ;
Crutison, Joseph ;
Wu, Richard ;
Zhang, Xiaodong ;
Zhu, X. Ronald ;
Mohan, Radhe ;
Amin, Mayankkumar V. ;
Fuller, C. David ;
Frank, Steven J. .
RADIOTHERAPY AND ONCOLOGY, 2016, 121 (03) :381-386
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Brier GW, 1950, MON WEATHER REV INTE, V78, P1, DOI DOI 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO
[7]  
2
[8]   The dose-response of the anal sphincter region - An analysis of data from the MRC RT01 trial [J].
Buettner, Florian ;
Gulliford, Sarah L. ;
Webb, Steve ;
Sydes, Matthew R. ;
Dearnaley, David P. ;
Partridge, Mike .
RADIOTHERAPY AND ONCOLOGY, 2012, 103 (03) :347-352
[9]   Novel approaches to improve the therapeutic index of head and neck radiotherapy: An analysis of data from the PARSPORT randomised phase III trial [J].
Buettner, Florian ;
Miah, Aisha B. ;
Gulliford, Sarah L. ;
Hall, Emma ;
Harrington, Kevin J. ;
Webb, Steve ;
Partridge, Mike ;
Nutting, Christopher M. .
RADIOTHERAPY AND ONCOLOGY, 2012, 103 (01) :82-87
[10]   Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach [J].
Buettner, Florian ;
Gulliford, Sarah L. ;
Webb, Steve ;
Partridge, Mike .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (17) :5139-5153