ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF MOBIUS EQUATIONS

被引:7
作者
XU, XW [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
D O I
10.2307/2154250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization of the Schwarzian derivative to conformal mappings of Riemannian manifolds has naturally introduced the corresponding overdetermined differential equation which we call the Mobius equation. We are interested in study of the existence and uniqueness of the solution of the Mobius equation. Among other things, we show that, for a compact manifold, if Ricci curvature is nonpositive, for a complete noncompact manifold, if the scalar curvature is a positive constant, then the differential equation has only constant solutions. We also study the nonhomogeneous equation in an n-dimensional Euclidean space.
引用
收藏
页码:927 / 945
页数:19
相关论文
共 22 条
  • [1] Aubin Thierry, 1982, MONGE AMPERE EQUATIO, V252
  • [2] SCALAR CURVATURE FUNCTIONS IN A CONFORMAL CLASS OF METRICS AND CONFORMAL TRANSFORMATIONS
    BOURGUIGNON, JP
    EZIN, JP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) : 723 - 736
  • [3] THE EXISTENCE OF NEGATIVELY RICCI CURVED METRICS ON 3 MANIFOLDS
    GAO, LZ
    YAU, ST
    [J]. INVENTIONES MATHEMATICAE, 1986, 85 (03) : 637 - 652
  • [4] Goldberg SI., 1970, DUKE MATH J, V37, P655, DOI [10.1215/s0012-7094-70-03781-6, DOI 10.1215/S0012-7094-70-03781-6]
  • [5] KOBAYASHI S, 1963, F DIFFERENTIAL GEOME, V1
  • [6] KOBAYASHI S, 1970, TRANSFORMATION GROUP
  • [7] THE YAMABE PROBLEM
    LEE, JM
    PARKER, TH
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) : 37 - 91
  • [8] Lehto O, 1987, GRADUATE TEXTS MATH, V109
  • [9] Lichnerowicz A, 1958, TRAVAUX RECHERCHES M, VIII
  • [10] Obata M., 1971, J DIFFER GEOM, V6, P247