On some properties of the Navier-Stokes equations

被引:0
作者
Rubina, L., I
Ul'yanov, O. N.
机构
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2016年 / 22卷 / 01期
关键词
Navier-Stokes equations; initial value problem; boundary value problem; Reynolds number; turbulence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the initial and boundary value problems for the system of dimensionless Navier-Stokes equations describing the dynamics of a viscous incompressible fluid using the method of characteristics and the geometric method developed by the authors. Some properties of the formulation of these problems are considered. We study the effect of the Reynolds number on the flow of a viscous fluid near the surface of a body.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [41] On a theorem by Sohr for the Navier-Stokes equations
    Luigi C. Berselli
    Renato Manfrin
    Journal of Evolution Equations, 2004, 4 : 193 - 211
  • [42] On partial regularity for the Navier-Stokes equations
    Kukavica, Igor
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (03) : 717 - 728
  • [44] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090
  • [45] On regularity for the axisymmetric Navier-Stokes equations
    He, Fangyi
    Wei, Zhiqiang
    Zhu, Weiyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1256 - 1265
  • [46] A Hybrid Regularization for the Navier-Stokes Equations
    Cibik, Aytekin
    Siddiqua, Farjana
    Layton, William
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)
  • [47] On a theorem by Sohr for the Navier-Stokes equations
    Berselli, LC
    Manfrin, R
    JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (02) : 193 - 211
  • [48] Navier-Stokes equations on Riemannian manifolds
    Samavaki, Maryam
    Tuomela, Jukka
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 148
  • [49] Navier-Stokes Equations for Elliptic Complexes
    Mera, Azal
    Shlapunov, Alexander A.
    Tarkhanov, Nikolai
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (01): : 3 - 27
  • [50] An accelerated algorithm for Navier-Stokes equations
    Venturin, M.
    Bertelle, R.
    Russo, M. R.
    SIMULATION MODELLING PRACTICE AND THEORY, 2010, 18 (02) : 217 - 229