AN OPTIMAL PARALLEL MATCHING ALGORITHM FOR COGRAPHS

被引:9
作者
LIN, R [1 ]
OLARIU, S [1 ]
机构
[1] OLD DOMINION UNIV,DEPT COMP SCI,NORFOLK,VA 23529
关键词
D O I
10.1006/jpdc.1994.1067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The class of cographs, or complement-reducible graphs, arises naturally in many different areas of applied mathematics and computer science. We show that the problem of finding a maximum matching in a cograph can be solved optimally in parallel by reducing it to parenthesis matching. With an n-vertex cograph G represented by its parse tree as input, our algorithm finds a maximum matching in G in O(log n) time using O(n/log n) processors in the EREW-PRAM model. (C) 1994 Academic Press, Inc.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 32 条
[1]   A SIMPLE PARALLEL TREE CONTRACTION ALGORITHM [J].
ABRAHAMSON, K ;
DADOUN, N ;
KIRKPATRICK, DG ;
PRZYTYCKA, T .
JOURNAL OF ALGORITHMS, 1989, 10 (02) :287-302
[2]  
ADHAR GS, 1990, 21ST P INT C COMB GR
[3]  
ANDERSON RJ, 1991, ALGORITHMICA, V6, P859, DOI 10.1007/BF01759076
[4]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[5]   APPROXIMATE PARALLEL SCHEDULING .1. THE BASIC TECHNIQUE WITH APPLICATIONS TO OPTIMAL PARALLEL LIST RANKING IN LOGARITHMIC TIME [J].
COLE, R ;
VISHKIN, U .
SIAM JOURNAL ON COMPUTING, 1988, 17 (01) :128-142
[6]   THE ACCELERATED CENTROID DECOMPOSITION TECHNIQUE FOR OPTIMAL PARALLEL TREE EVALUATION IN LOGARITHMIC TIME [J].
COLE, R ;
VISHKIN, U .
ALGORITHMICA, 1988, 3 (03) :329-346
[7]   A LINEAR RECOGNITION ALGORITHM FOR COGRAPHS [J].
CORNEIL, DG ;
PERL, Y ;
STEWART, LK .
SIAM JOURNAL ON COMPUTING, 1985, 14 (04) :926-934
[8]  
DAHLHAUS E, UNPUB EFFICIENT PARA
[9]  
DAHLHAUS E, 1992, 4TH P IEEE S PAR DIS
[10]   EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHING IN GRAPHS. [J].
Galil, Zvi .
Computing surveys, 1986, 18 (01) :23-38