MUTUAL EXCLUSION VERSUS COEXISTENCE FOR DISCRETE COMPETITIVE-SYSTEMS

被引:95
作者
FRANKE, JE [1 ]
YAKUBU, AA [1 ]
机构
[1] HOWARD UNIV,DEPT MATH,WASHINGTON,DC 20059
关键词
CHAOS; COEXISTENCE; EXTINCTION; LYAPUNOV FUNCTIONS; OMEGA-LIMIT SETS;
D O I
10.1007/BF00160333
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using discrete competition models where the density dependent growth functions are either all exponential or all rational, notwithstanding the complex interactions of the species, we establish an exclusion principle. Moreover, in a 2-species discrete competition model where the growth functions are exponential and rational, an example is given illustrating coexistence when our conditions are satisfied. We obtain an exclusion principle for this 2-species model for some choice of parameters.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 12 条
[1]  
BISHIR J, EFFECTS DENSITY INTE
[2]  
Collet P., 1980, ITERATED MAPS INTERV
[3]   PREDATION IN MULTI-PREY COMMUNITIES [J].
COMINS, HN ;
HASSELL, MP .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 62 (01) :93-114
[4]  
Devaney R., 1990, ACTA APPL MATH, V19, P204
[5]  
FRANKE J, IN PRESS J MATH ANAL
[6]   GLOBAL ATTRACTORS IN COMPETITIVE-SYSTEMS [J].
FRANKE, JE ;
YAKUBU, AA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (02) :111-129
[7]  
FRAUENTHAL JC, 1984, P S APPL MATH, V30, P9
[8]  
Hassell M. P., 1976, DYNAMICS COMPETITION
[9]   DISCRETE-TIME MODELS FOR 2-SPECIES COMPETITION [J].
HASSELL, MP ;
COMINS, HN .
THEORETICAL POPULATION BIOLOGY, 1976, 9 (02) :202-221
[10]   COEXISTENCE FOR SYSTEMS GOVERNED BY DIFFERENCE-EQUATIONS OF LOTKA-VOLTERRA TYPE [J].
HOFBAUER, J ;
HUTSON, V ;
JANSEN, W .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (05) :553-570