QUASI-INJECTIVE MODULES AND STABLE TORSION CLASSES

被引:7
作者
ARMENDAR.EP
机构
[1] University of Texas, Austin, TX
关键词
D O I
10.2140/pjm.1969.31.277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we examine the J-torsion submodule of quasi-injective R-modules, R a ring with unit, where J is a torsion class in the sense of S. E. Dickson. We show that for a stable torsionclass J, the J-torsion submodule of any quasi-injective module is a direct summand, while if J contains all Goldie-torsion modules, then every epimorphic image of a quasi-injective module has its J -torsion submodule as a direct summand. In addition, we show that for a stable torsion class J, all.J -torsion-free modules are injective if and only if R = T(R) ⊕ K (ring direct sum), with KArtinian semisimple. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:277 / &
相关论文
共 9 条
[1]   GOLDIES TORSION THEORY AND ITS DERIVED FUNCTOR [J].
ALIN, JS ;
DICKSON, SE .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 24 (02) :195-&
[2]   A TORSION THEORY FOR ABELIAN CATEGORIES [J].
DICKSON, SE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) :223-&
[3]  
FAITH C, 1967, LECTURES INJECTIVE M, V49
[4]  
Goldie A. W., 1964, J ALGEBRA, V1, P268
[5]  
Harada M., 1965, OSAKA J MATH, V2, P351
[6]   SOME ASPECTS OF TORSION [J].
JANS, JP .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (04) :1249-&
[7]  
Matlis E., 1960, P AM MATH SOC, V11, P385, DOI 10.1090/S0002-9939-1960-0116044-8
[8]   SEMISIMPLE MAXIMAL QUOTIENT RINGS [J].
SANDOMIERSKI, FL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 128 (01) :112-+
[9]   SIMPLE MODULES AND HEREDITARY RINGS [J].
ZAKS, A .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (03) :627-&