A NEW PROCEDURE FOR DECODING CYCLIC AND BCH CODES UP TO ACTUAL MINIMUM DISTANCE

被引:41
作者
FENG, GL [1 ]
TZENG, KK [1 ]
机构
[1] DEPT ELECT ENGN & COMP SCI,BETHLEHEM,PA 18015
基金
美国国家科学基金会;
关键词
BCH CODING; CYCLIC CODING; CODING DECODING; ALGEBRAIC DECODING;
D O I
10.1109/18.333854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new procedure for decoding cyclic and BCH codes up to their actual minimum distance. It generalizes the Peterson decoding procedure and our recent procedure using nonrecurrent syndrome dependence relations. For a code with actual minimum distance d to correct up to t = [(d - 1) / 2] errors, the procedure requires a (2t + 1) X (2t + 1) syndrome matrix with known syndromes above the minor diagonal and unknown syndromes and their conjugates on the minor diagonal. In contrast to previous procedures, this procedure is primarily aimed at solving for the unknown syndromes instead of determining an error-locator polynomial. Decoding is then accomplished by determining the error vector as the inverse Fourier transform of the syndrome vector (S-0, S-1(...), S-n-1). We have shown that, with this procedure, all binary cyclic and BCH codes of length < 63 (with one exception) can be decoded up to their actual minimum distance. The procedure incorporates an extension of our fundamental iterative algorithm and a majority scheme for confirming the true values computed for the unknown syndromes. The complexity of this decoding procedure is O(n(3)).
引用
收藏
页码:1364 / 1374
页数:11
相关论文
共 15 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]  
Blahut R. E, 1983, THEORY PRACTICE ERRO
[3]   ALGEBRAIC DECODING BEYOND EBCH OF SOME BINARY CYCLIC CODES, WHEN E-GREATER-THAN-EBCH [J].
BOURS, P ;
JANSSEN, JCM ;
VANASPERDT, M ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (01) :214-222
[4]   ALGEBRAIC DECODING OF THE (23,12,7) GOLAY CODE [J].
ELIA, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (01) :150-151
[5]   DECODING CYCLIC AND BCH CODES UP TO ACTUAL MINIMUM DISTANCE USING NONRECURRENT SYNDROME DEPENDENCE RELATIONS [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1716-1723
[6]   A GENERALIZATION OF THE BERLEKAMP-MASSEY ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS WITH APPLICATIONS TO DECODING CYCLIC CODES [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) :1274-1287
[7]   A GENERALIZED EUCLIDEAN ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :584-594
[8]   GENERALIZATIONS OF BCH BOUND [J].
HARTMANN, CR ;
TZENG, KK .
INFORMATION AND CONTROL, 1972, 20 (05) :489-&
[9]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[10]   ALGEBRAIC DECODING OF THE (32,16,8) QUADRATIC RESIDUE CODE [J].
REED, IS ;
YIN, XW ;
TRUONG, TK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :876-880