A compact and low cost microfluidic cell impedance detection system

被引:4
作者
Mei, Zhe [1 ,2 ]
Liu, Zhiwen [1 ]
Zhou, Zhiguo [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
中国国家自然科学基金;
关键词
microfluidics; cell impedance detection; cell classification; low cost; impedance ratio;
D O I
10.3934/biophy.2016.4.596
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A microfluidic cell impedance measurement device is presented in this article. The design is simple to fabricate, compact, highly sensitive, and can be easily incorporated into a microfluidic flow cytometer suitable for point-of-care applications. The simple fabrication process and enhanced sensitivity are attributed partly to a novel design of using fluidic channels as "liquid electrodes" to assure a uniform electric field distribution over the cell detection zone. The system's low cost and compact size is due to its sheathless flow design and single circuit board for cell impedance detection, eliminating expensive and bulky equipments such as lock-in amplifiers and additional sheath flow pumps. The device clearly detects and distinguishes polystyrene beads of 7.66 mu m, 10.5 mu m and 14.7 mu m diameters in a mixture with coefficients of variation of 13.87%, 7.98% and 3.74%, respectively. By extracting the features of cell impedance signals using signal processing, we have introduced a new parameter, impedance ratio, to enhance the cell classification capabilities of the device, as demonstrated in the experiment of lymphocytes and granulocytes detection from whole blood.
引用
收藏
页码:596 / 608
页数:13
相关论文
共 28 条
[1]  
Bernabini C, 2011, LAB CHIP, V11, P407, DOI [10.1039/c0lc00099j, 10.1039/c01c00099j]
[2]   Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation [J].
Cheung, K ;
Gawad, S ;
Renaud, P .
CYTOMETRY PART A, 2005, 65A (02) :124-132
[3]   Microfluidic Impedance-Based Flow Cytometry [J].
Cheung, Karen C. ;
Di Berardino, Marco ;
Schade-Kampmann, Grit ;
Hebeisen, Monika ;
Pierzchalski, Arkadiusz ;
Bocsi, Jozsef ;
Mittag, Anja ;
Tarnok, Attila .
CYTOMETRY PART A, 2010, 77A (07) :648-666
[4]   Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges [J].
Chun, HG ;
Chung, TD ;
Kim, HC .
ANALYTICAL CHEMISTRY, 2005, 77 (08) :2490-2495
[5]  
Dale DC, 2008, PHAGOCYTES NEUTROPHI, P935
[6]   Characterization and optimization of liquid electrodes for lateral dielectrophoresis [J].
Demierre, Nicolas ;
Braschler, Thomas ;
Linderholm, Pontus ;
Seger, Urban ;
van Lintel, Harald ;
Renaud, Philippe .
LAB ON A CHIP, 2007, 7 (03) :355-365
[7]   Fabrication of microfluidic devices using polydimethylsiloxane [J].
Friend, James ;
Yeo, Leslie .
BIOMICROFLUIDICS, 2010, 4 (02)
[8]   Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing [J].
Gawad, S ;
Schild, L ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :76-82
[9]  
Graham Marshall Don, 2003, J ASS LAB AUTOM, V8, P72, DOI DOI 10.1016/S1535-5535(03)00023-6
[10]   Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry [J].
Holmes, David ;
Pettigrew, David ;
Reccius, Christian H. ;
Gwyer, James D. ;
van Berkel, Cees ;
Holloway, Judith ;
Davies, Donna E. ;
Morgan, Hywel .
LAB ON A CHIP, 2009, 9 (20) :2881-2889