The algorithm for adjacent vertex distinguishing proper edge coloring of graphs

被引:2
作者
Li, Jingwen [1 ]
Hu, Tengyun [1 ]
Wen, Fei [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Graph; algorithm; adjacent vertex distinguishing proper edge coloring; adjacent vertex distinguishing proper edge chromatic number;
D O I
10.1142/S1793830915500445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adjacent vertex distinguishing proper edge coloring of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meet the same set of colors. The minimum number of colors is called adjacent vertex distinguishing proper edge chromatic number of G. In this paper, we present a new heuristic intelligent algorithm to calculate the adjacent vertex distinguishing proper edge chromatic number of graphs. To be exact, the algorithm establishes two objective subfunctions and a main objective function to find its optimal solutions by the conditions of adjacent vertex distinguishing proper edge coloring. Moreover, we test and analyze its feasibility, and the test results show that this algorithm can rapidly and efficiently calculate the adjacent vertex distinguishing proper edge chromatic number of graphs with fixed order, and its time complexity is less than O(n(3)).
引用
收藏
页数:13
相关论文
共 21 条
[1]  
AIGNER M, 1992, ANN DISCRETE MATH, V52, P1
[2]   Adjacent vertex distinguishing edge-colorings [J].
Balister, P. N. ;
Gyori, E. ;
Lehel, J. ;
Schelp, R. H. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :237-250
[3]   Vertex distinguishing colorings of graphs with Δ (G)=2 [J].
Balister, PN ;
Bollobás, B ;
Schelp, RH .
DISCRETE MATHEMATICS, 2002, 252 (1-3) :17-29
[4]   Vertex-distinguishing edge colorings of graphs [J].
Ballister, PN ;
Riordan, OM ;
Schelp, RH .
JOURNAL OF GRAPH THEORY, 2003, 42 (02) :95-109
[5]  
Baril JL, 2006, AUSTRALAS J COMB, V35, P89
[6]   On the vertex-distinguishing proper edge-colorings of graphs [J].
Bazgan, C ;
Harkat-Benhamdine, A ;
Li, H ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) :288-301
[7]  
Bondy JA., 1976, GRADUATE TEXTS MATH
[8]  
Burris AC, 1997, J GRAPH THEOR, V26, P73, DOI 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO
[9]  
2-C
[10]  
Burris AC, 1993, THESIS