The SAR Model for Very Large Datasets: A Reduced Rank Approach

被引:21
作者
Burden, Sandy [1 ]
Cressie, Noel [1 ]
Steel, David G. [1 ]
机构
[1] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
asymmetric spatial dependence matrix; Australian census; heteroskedasticity; Moran operator; spatial autoregressive model; spatial basis functions; spatial random effects model;
D O I
10.3390/econometrics3020317
中图分类号
F [经济];
学科分类号
02 ;
摘要
The SAR model is widely used in spatial econometrics to model Gaussian processes on a discrete spatial lattice, but for large datasets, fitting it becomes computationally prohibitive, and hence, its usefulness can be limited. A computationally-efficient spatial model is the spatial random effects (SRE) model, and in this article, we calibrate it to the SAR model of interest using a generalisation of the Moran operator that allows for heteroskedasticity and an asymmetric SAR spatial dependence matrix. In general, spatial data have a measurement-error component, which we model, and we use restricted maximum likelihood to estimate the SRE model covariance parameters; its required computational time is only the order of the size of the dataset. Our implementation is demonstrated using mean usual weekly income data from the 2011 Australian Census.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 47 条
[1]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[2]  
Anselin L, 2002, AGR ECON-BLACKWELL, V27, P247, DOI 10.1111/j.1574-0862.2002.tb00120.x
[3]  
Australian Bureau of Statistics, 2012, SURV INC HOUS 2011 1
[4]  
Australian Bureau of Statistics, 2013, SOC IND AR SEIFA 201
[5]  
Australian Bureau of Statistics, 2011, 2011 AUSTR CENS POP
[6]   Stationary process approximation for the analysis of large spatial datasets [J].
Banerjee, Sudipto ;
Gelfand, Alan E. ;
Finley, Andrew O. ;
Sang, Huiyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :825-848
[7]   BAYESIAN IMAGE-RESTORATION, WITH 2 APPLICATIONS IN SPATIAL STATISTICS [J].
BESAG, J ;
YORK, J ;
MOLLIE, A .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) :1-20
[8]  
Bradley J.R., 2014, ARXIV14077479V2STATM
[9]  
Bradley J. R., 2011, P 2011 JOINT STAT M, P3393
[10]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241