On the nonlinear effects due to water wave interaction with a turbulent wind

被引:0
作者
Reutov, VP
Troitskaya, YI
机构
来源
IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA | 1995年 / 31卷 / 06期
关键词
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The nonlinear interaction of a two-dimensional water wave with a turbulent atmospheric boundary layer is investigated, An orthogonal curvilinear coordinate frame, an isotropic model of turbulent viscosity and approximation of aerodynamically smooth surface are used. The analysis is performed in the framework of a qasilinear model for the interaction of the mean wind with the wave field. The amplitude dependencies of the surface wave growth rate and of the additional contribution to the mean wind velocity far apart from the surface are evaluated for a broad range of wavelengths and wind friction velocities. The role of the wind current nonlinearity in the excitation of water waves near the stability threshold is discussed.
引用
收藏
页码:825 / 834
页数:10
相关论文
共 24 条
[1]   TURBULENT AIR-FLOW OVER WATER-WAVES - A NUMERICAL STUDY [J].
ALZANAIDI, MA ;
HUI, WH .
JOURNAL OF FLUID MECHANICS, 1984, 148 (NOV) :225-246
[2]  
Andronov AA, 1979, NONLINEAR WAVES, P68
[3]  
BROOK TB, 1959, J FLUID MECH, V6, P161
[4]   NUMERICAL-SIMULATION OF THE BOUNDARY-LAYER ABOVE WAVES [J].
CHALIKOV, DV .
BOUNDARY-LAYER METEOROLOGY, 1986, 34 (1-2) :63-98
[5]   ON THE NUMERICAL INTEGRATION OF THE ORR-SOMMERFELD EQUATION [J].
CONTE, SD ;
MILES, JW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1959, 7 (04) :361-366
[6]   PREDICTION OF TURBULENT-FLOW OVER A WAVY BOUNDARY [J].
DAVIS, RE .
JOURNAL OF FLUID MECHANICS, 1972, 52 (MAR28) :287-+
[7]   ON NON-LINEAR WATER-WAVES UNDER A LIGHT WIND AND LANDAU TYPE EQUATIONS NEAR THE STABILITY THRESHOLD [J].
FABRIKANT, AL .
WAVE MOTION, 1980, 2 (04) :355-360
[8]  
FABRIKANT AL, 1976, IZV AN SSSR FIZ ATM+, V12, P858
[9]  
FILLIPS OM, 1980, DINAMIKA VERKHNEGO S
[10]   NUMERICAL-MODEL OF AIR-FLOW ABOVE WATER-WAVES [J].
GENT, PR ;
TAYLOR, PA .
JOURNAL OF FLUID MECHANICS, 1976, 77 (SEP9) :105-128