SPECTRAL ESTIMATION OF CONTINUOUS-TIME STATIONARY-PROCESSES FROM RANDOM SAMPLING

被引:26
|
作者
LII, KS [1 ]
MASRY, E [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT ELECT & COMP ENGN,LA JOLLA,CA 92093
关键词
SPECTRAL ESTIMATION OF CONTINUOUS-TIME PROCESSES; POINT PROCESSES; ALIAS-FREE SAMPLING; ASYMPTOTIC BIAS; COVARIANCE; NORMALITY;
D O I
10.1016/0304-4149(94)90099-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X (t), - infinity < t < infinity} be a continuous-time stationary process with spectral density function phi(x)(lambda) and {tau(k)} be a stationary point process independent of X. Estimates ($) over cap phi(x)(lambda) of phi(x)(lambda) based on the discrete-time observation {X (tau(k)), tau(k)} are considered. Asymptotic expressions for the bias and covariance of ($) over cap phi(x)(lambda) are derived. A multivariate central limit theorem is established for the spectral estimators ($) over cap phi(x)(lambda). Under mild conditions, it is shown that the bias is independent of the statistics of the sampling point process {tau(k)} and that there exist sampling point processes such that the asymptotic variance is uniformly smaller than that of a Poisson sampling scheme for all spectral densities phi(x)(lambda) and all frequencies lambda.
引用
收藏
页码:39 / 64
页数:26
相关论文
共 50 条
  • [41] Identifiability and Parameter Estimation of Linear Continuous-time Systems under Irregular and Random Sampling
    Mu, Biqiang
    Guo, Jin
    Wang, Le Yi
    Yin, George
    Xu, Lijian
    Zheng, Wei Xing
    IFAC PAPERSONLINE, 2015, 48 (28): : 332 - 337
  • [42] Temporal aggregation of stationary and non-stationary continuous-time processes
    Tsai, H
    Chan, KS
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 583 - 597
  • [43] Spectral density estimation for random processes with stationary increments
    Chen, Wei
    Huang, Chunfeng
    Zhang, Haimeng
    Schaffer, Matthew
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2024, 40 (04) : 960 - 978
  • [44] DENSITY ESTIMATION IN A CONTINUOUS-TIME STATIONARY MARKOV PROCESS
    NGUYEN, HT
    ANNALS OF STATISTICS, 1979, 7 (02): : 341 - 348
  • [45] DENSITY ESTIMATION IN A CONTINUOUS-TIME STATIONARY MARKOV PROCESS
    NGUYEN, HT
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (21): : 1397 - 1400
  • [46] High-frequency sampling and kernel estimation for continuous-time moving average processes
    Brockwell, Peter J.
    Ferrazzano, Vincenzo
    Klueppelberg, Claudia
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (03) : 385 - 404
  • [47] EXTREME VALUE THEORY FOR CONTINUOUS PARAMETER STATIONARY-PROCESSES
    LEADBETTER, MR
    ROOTZEN, H
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (01): : 1 - 20
  • [48] Polynomial interpolation and prediction of continuous-time processes from random samples
    Masry, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 776 - 783
  • [49] ON THE CONVERGENCE OF SPECTRAL DENSITIES OF ARRAYS OF WEAKLY STATIONARY-PROCESSES
    FALK, M
    ANNALS OF PROBABILITY, 1984, 12 (03): : 918 - 921
  • [50] Statistical Inference of Spectral Estimation for Continuous-Time MA Processes with Finite Second Moments
    Fasen, V.
    MATHEMATICAL METHODS OF STATISTICS, 2013, 22 (04) : 283 - 309