Power domination of the cartesian product of graphs

被引:12
作者
Koh, K. M. [1 ]
Soh, K. W. [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Lower Kent Ridge Rd, Singapore 119260, Singapore
关键词
Power domination; Cartesian product; Vizing's Inequality; Corona;
D O I
10.1016/j.akcej.2016.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give a brief survey on the power domination of the Cartesian product of graphs. Then we conjecture a Vizing-like inequality for the power domination problem, and prove that the inequality holds when at least one of the two graphs is a tree. (C) 2016 Publishing Services by Elsevier B.V. on behalf of Kalasalingam University.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 10 条
[1]   Power Domination in Cylinders, Tori, and Generalized Petersen Graphs [J].
Barrera, Roberto ;
Ferrero, Daniela .
NETWORKS, 2011, 58 (01) :43-49
[2]  
Dean N., 2011, Proceedings of the 2011 IEEE 14th International Conference on Computational Science and Engineering (CSE 2011). 11th International Symposium on Pervasive Systems, Algorithms, Networks (I-SPAN 2011). 10th IEEE International Conference on Ubiquitous Computing and Communications (IUCC 2011), P488, DOI 10.1109/CSE.2011.89
[3]   Power domination in product graphs [J].
Dorbec, Paul ;
Mollard, Michel ;
Klavzar, Sandi ;
Spacapan, Simon .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :554-567
[4]   A note on power domination in grid graphs [J].
Dorfling, M ;
Henning, MA .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (06) :1023-1027
[5]   Domination in graphs applied to electric power networks [J].
Haynes, TW ;
Hedetniemi, SM ;
Hedetniemi, ST ;
Henning, MA .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) :519-529
[6]  
MILI L, 1991, P EPRI NSF WORKSH AP
[7]  
Pai K.-J., 2012, 29 WORKSH COMB MATH, P56
[8]  
Soh KW, 2014, AKCE INT J GRAPHS CO, V11, P51
[9]  
Vizing V.G., 1968, USPEKHIMAT NAUK, V23, P117
[10]  
Zhao Min, 2007, Journal of Shanghai University, V11, P218, DOI 10.1007/s11741-007-0305-3