A SEMICLASSICAL TRACE FORMULA FOR SCHRODINGER-OPERATORS

被引:44
作者
BRUMMELHUIS, R
URIBE, A
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
[2] INST ADV STUDY,PRINCETON,NJ 08540
关键词
D O I
10.1007/BF02099074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let S(h) = -h-DELTA + V on R(n), with V smooth. If 0 < E2 < lim infV(x), the spectrum of S(h) near E2 consists (for h small) of finitely-many eigenvalues, lambda-j(h). We study the asymptotic distribution of these eigenvalues about E2 as h --> 0; we obtain semi-classical asymptotics for [GRAPHICS] with f-epsilon-C0 infinity, in terms of the periodic classical trajectories on the energy surface B(E) = {(zeta)2 + V(x) = E2}. This in turn gives Weyl-type estimates for the counting function # {j;(square-root lambda-j(h) - E) less-than-or-equal-to ch}. We make a detailed analysis of the case when the flow on B(E) is periodic.
引用
收藏
页码:567 / 584
页数:18
相关论文
共 22 条
[11]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[12]  
HELFFER B, 1981, ANN I FOURIER, V31, P169
[13]   MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I [J].
HELFFER, B ;
SJOSTRAND, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :337-408
[14]  
HELFFER B, 1988, SPRINGER LECTURE NOT, V1336
[15]  
HORMANDER L, 1985, ANAL LINEAR PARTIAL, V4
[16]  
Kato T., 2013, PERTURBATION THEORY, V132
[17]  
PETKOV V, 1985, COMM PDE, V10
[18]  
Robert D., 1987, PROGR MATH, V68
[19]  
TAYLOR M, UNPUB SEMICLASSICAL
[20]  
VOROS A, 1986, PATHG INTEGRAS MEV M