Aspects of programming the Lanczos method for generalized symmetric matrices

被引:0
作者
Ikramov, KD
Kushnereva, DA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ways of using the generalized symmetry in sparse eigenvalue problems for the Lanczos method are classified. These include the expansion of a matrix into a direct sum, realification of a complex matrix, the use of non-standard scalar products and fast algorithms for multiplying a symmetric or Hermitian matrix by a vector. (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 7 条
[1]  
IKRAMOV KD, 1991, VESTN MGU SER, V15, P16
[2]  
IKRAMOV KD, 1991, ZH VYCHISL MAT MAT F, V311, P1897
[3]  
IKRAMOV KD, 1991, APPL SOFTWARE PACKAG, P76
[4]  
IKRAMOV KD, 1994, ZH VYCHISL MAT MAT F, V34, P301
[5]   FAST ALGORITHMS FOR COMPUTING SYMMETRICAL HERMITIAN MATRIX-VECTOR PRODUCTS [J].
MOU, ZJ .
ELECTRONICS LETTERS, 1991, 27 (14) :1272-1274
[6]  
PISSANETSKI S, 1988, SPARSE MATRIX TECHNI
[7]   A HERMITIAN TOEPLITZ MATRIX IS UNITARILY SIMILAR TO A REAL TOEPLITZ-PLUS-HANKEL MATRIX [J].
WILKES, DM ;
MORGERA, SD ;
NOOR, F ;
HAYES, MH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (09) :2146-2148