QUANTIZATION OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS - GEOMETRIC ASPECT

被引:1
作者
MYKYTYUK, IV
PRYKARPATSKYJ, AK
机构
[1] NEW JERSEY INST TECHNOL, DEPT MATH, NEWARK, NJ 07102 USA
[2] NEW JERSEY INST TECHNOL, CTR APPL MATH & STAT, NEWARK, NJ 07102 USA
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 1994年 / 109卷 / 11期
关键词
03.65; quantum mechanics; Quantum theory;
D O I
10.1007/BF02726682
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The procedure of geometric quantization is developed for completely integrable Hamiltonian systems on smooth manifolds with exact symplectic structure. A quantum polarization set of the corresponding quantum-dynamical systems is described by means of action-angle variables as well as the character group of the fundamental group of phase space. These results are applied for the spectrum of a quantum Neumann-type dynamical system on S-2 to be obtained in analytical form.
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 19 条
  • [1] DUAL MOMENT MAPS INTO LOOP ALGEBRAS
    ADAMS, MR
    HARNAD, J
    HURTUBISE, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) : 299 - 308
  • [2] [Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
  • [3] ARNOLD VI, 1974, MATH METHODS CLASSIC, P430
  • [4] ALTERNATIVE LAX STRUCTURES FOR THE CLASSICAL AND QUANTUM NEUMANN MODEL
    AVAN, J
    TALON, M
    [J]. PHYSICS LETTERS B, 1991, 268 (02) : 209 - 216
  • [5] BOGOLJUBOV MM, 1992, UKR MATH J, V44, P913
  • [6] CAMPBELL P, 1983, HADRONIC J, V6, P212
  • [7] DWIGHT H, 1961, TABLES INTEGRALS, P272
  • [8] GUILLEMIN W, 1977, GEOMETRIC ASYMPTOTIC, P474
  • [9] HURT N, 1983, GEOMETRIC QUANTIZATI, P336
  • [10] GENERALIZED CLASSICAL BRST COHOMOLOGY AND REDUCTION OF POISSON MANIFOLDS
    KIMURA, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) : 155 - 182