P-32 POSTLABELING DETECTION OF RADIATION-INDUCED DNA DAMAGE - IDENTIFICATION AND ESTIMATION OF THYMINE GLYCOLS AND PHOSPHOGLYCOLATE TERMINI

被引:91
|
作者
WEINFELD, M
SODERLIND, KJM
机构
[1] Radiobiology Program, Cross Cancer Institute, Edmonton, Alberta
关键词
D O I
10.1021/bi00218a031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A P-32-postlabeling assay has been developed that permits detection of several radiogenic base and sugar lesions of DNA at the femtomole level. The technique is based on the inability of DNase I and snake venom phosphodiesterase to cleave the internucleotide phosphodiester bond immediately 5' to the site of damage so that complete digestion of irradiated DNA with these nucleases and alkaline phosphatase yields lesion-bearing "dinucleoside" monophosphates. Because these fragments contain an unmodified nucleoside at the 5'-end of each molecule, they can be readily phosphorylated by T4 polynucleotide kinase and [gamma-P-32]ATP and analyzed by polyacrylamide gel electrophoresis and reverse-phase HPLC. We observed a linear induction of total damage in DNA irradiated with 5-50 Gy. Virtually no damage was detected when the DNA was irradiated in solution containing 1 M DMSO, implicating hydroxyl radicals in the formation of these lesions. Evidence for the presence of thymine glycols and phosphoglycolate groups came from (i) a comparison of the radiation-induced products with those produced by OsO4 and KMnO4 and (ii) incubation of irradiated DNA with Escherichia coli endonuclease III and exonuclease III before analysis by the postlabeling procedure. This was confirmed by comigration of the radiogenic products with chemically synthesized markers. G values of 0.0022 and 0.0105-mu-mol J-1 were obtained for thymine glycol and phosphoglycolate production, respectively. The identity of the 5'-nucleotide of each isolated compound was obtained by nuclease P1 digestion. This analysis of nearest-neighbor bases to thymine glycols and phosphoglycolates indicated a nonrandom interaction between radiation-induced hydroxyl radicals and DNA.
引用
收藏
页码:1091 / 1097
页数:7
相关论文
共 50 条