THE SPACE OF SPECTRAL MEASURES IS A HOMOGENEOUS REDUCTIVE SPACE

被引:9
作者
ANDRUCHOW, E
RECHT, L
STOJANOFF, D
机构
[1] INST ARGENT MATEMAT,RA-1055 BUENOS AIRES,ARGENTINA
[2] UNIV SIMON BOLIVAR,DEPT MATEMAT,CARACAS,VENEZUELA
关键词
47B15; 58B10;
D O I
10.1007/BF01196599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the space of spectral measures on a W*-algebra is a smooth Banach manifold in a natural way and that the action of the group of invertible elements of the algebra by inner automorphisms makes it into a reductive homogeneous space. This gives a geometric structure for the set of normal operators with the same spectrum.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 10 条
[1]  
Apostol C., 1984, APPROXIMATION HILBER, VII
[2]   ANALYTICITY IN OPERATOR ALGEBRAS [J].
ARVESON, WB .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (03) :578-&
[3]  
CORACH G, IN PRESS ADV MATH
[4]  
Corach G., 1988, REV UNI N MAT ARGENT, V34, P132
[5]  
Dixmier J., 1957, ALGEBRES OPERATEURS
[6]  
Kadison RV, 1986, FUNDAMENTALS THEORY, VII
[7]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[8]  
RECHT L, CONDITIONAL EXPECTAT
[9]  
Umegaki H, 1959, KODAI MATH SEM REP, V11, P51, DOI DOI 10.2996/KMJ/1138844157
[10]  
VONNEUMANN J, 1949, ANN MATH, V41, P94