COMPOSITION OPERATORS ON POTENTIAL SPACES

被引:31
作者
ADAMS, DR
FRAZIER, M
机构
[1] UNIV KENTUCKY,DEPT MATH,LEXINGTON,KY 40506
[2] WASHINGTON UNIV,DEPT MATH,ST LOUIS,MO 63130
关键词
SOBOLEV SPACE; POTENTIAL SPACE; COMPOSITION OPERATOR;
D O I
10.2307/2159794
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a result of B. Dahlberg, the composition operators T(H)f = H degrees f need not be bounded on some of the Sobolev spaces (or spaces of Bessel potentials) even for very smooth functions H = H(t), H(0) = 0, unless of course, H(t) = ct. In this note a natural domain is found for T(H) that is, in a sense, maximal and on which the {T(H)} form an algebra of bounded operators. Here the functions H(t) need not be bounded though they are required to have a sufficient number of bounded derivatives.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 11 条
[1]   EQUIVALENCE OF 2 DEFINITIONS OF CAPACITY [J].
ADAMS, DR ;
POLKING, JC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (02) :529-534
[2]   BMO AND SMOOTH TRUNCATION IN SOBOLEV SPACES [J].
ADAMS, DR ;
FRAZIER, M .
STUDIA MATHEMATICA, 1988, 89 (03) :241-260
[3]   EXISTENCE OF CAPACITARY STRONG TYPE ESTIMATES IN RN [J].
ADAMS, DR .
ARKIV FOR MATEMATIK, 1976, 14 (01) :125-140
[4]  
Calderon A.-P., 1961, P S PURE MATH, VIV, P33
[5]  
Dahlberg BJ., 1979, P S PURE MATH, V35, P183
[6]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[7]  
Nirenberg L., 1959, ANN SCUOLA NORM-SCI, V13, P115
[8]  
Peetre J., 1976, DUKE U MATH SERIES, V1
[10]  
STRICHARTZ RS, 1967, J MATH MECH, V16, P1031