Multiobjective Differential Evolution Based on Fuzzy Performance Feedback

被引:4
作者
Jariyatantiwait, Chatkaew [1 ]
Yen, Gary G. [2 ]
机构
[1] Oklahoma State Univ, Sch Elect Engn, Stillwater, OK 74078 USA
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
关键词
Differential Evolution; Fuzzy Logic; Hypervolume; Maximum Spread; Multiobjective Performance Metrics; Spacing;
D O I
10.4018/ijsir.2014100104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution is often regarded as one of the most efficient evolutionary algorithms to tackle multiobjective optimization problems. The key to success of any multiobjective evolutionary algorithms (MOEAs) is maintaining a delicate balance between exploration and exploitation throughout the evolution process. In this paper, the authors propose a Fuzzy-based Multiobjective Differential Evolution (FMDE) that uses performance metrics, specifically hypervolume, spacing, and maximum spread, to measure the state of the evolution process. The authors apply the fuzzy inference rules to these metrics in order to dynamically adjust the associated control parameters of a chosen mutation strategy used in this algorithm. One parameter controls the degree of greedy or exploitation, while another regulates the degree of diversity or exploration of the reproduction phase. Therefore, the authors can appropriately adjust the degree of exploration and exploitation through performance feedback. The performance of FMDE is evaluated on well-known ZDT and DTLZ test suites. The results validate that the proposed algorithm is competitive with respect to chosen state-of-the-art MOEAs.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 35 条
[1]  
Abbass HA, 2002, IEEE C EVOL COMPUTAT, P831, DOI 10.1109/CEC.2002.1007033
[2]  
Auger A, 2009, FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, P87
[3]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[4]  
Balsiger C., 2001, 103 TIK SWISS FED I, V8
[5]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[6]   Solving multiobjective optimization problems using an artificial immune system [J].
Coello C.A.C. ;
Cortés N.C. .
Genetic Programming and Evolvable Machines, 2005, 6 (2) :163-190
[7]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]  
Deb K., 2002, 2002004 KANGAL
[10]  
Deb K., 2009, MULTIOBJECTIVE OPTIM