A PROBLEM RELATED TO FOULKES CONJECTURE

被引:4
作者
COKER, C [1 ]
机构
[1] SUNY COLL ONEONTA,ONEONTA,NY 13820
关键词
D O I
10.1007/BF02988299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a class of symmetric matrices T indexed by positive integers m greater-than-or-equal-to n greater-than-or-equal-to 2 and defined as follows: for any positive integers p and q let B(p,q) be the set of partitions of U = {1, 2, 3,..., pq} into p blocks each of size q. Let m greater-than-or-equal-to n greater-than-or-equal-to 2 be positive integers. By a transversal of alpha = A1/A2/.../A(n) is-an-element-of B(n,m) we mean a partition beta = B1/B2/ ... /B(m) is-an-element-of B(m,n) such that parallel-to A(i) and B(j) parallel-to = 1 for every i = 1, 2,..., n and every j = 1, 2,..., m. Let M be the zero-one matrix with rows indexed by the elements of B(n,m) and columns indexed by the elements of B(m,n) such that M(alpha,beta) = 1 iff beta is a transversal of alpha. We are interested in finding the eigenvalues and eigenspaces of the symmetric matrix T = MM(t). The nonsingularity of T implies Foulkes's Conjecture (for these values of m and n). In the case n = 2 we completely determine the eigenvalues and eigenspaces of T and in so doing demonstrate the nonsingularity of T. For n = 3 we develop a fast algorithm for computing the eigenvalues of T, and give numerical results in the cases m = 3, 4, 5, 6.
引用
收藏
页码:117 / 134
页数:18
相关论文
共 11 条
[1]   A NOTE ON PLETHYSM [J].
BLACK, SC ;
LIST, RJ .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (01) :111-112
[2]   HAHN POLYNOMIALS, DISCRETE HARMONICS, AND T-DESIGNS [J].
DELSARTE, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) :157-166
[3]  
FOULKES H., 1950, J LOND MATH SOC, V25, P205
[4]  
Gould H. W., 1972, COMBINATORIAL IDENTI
[5]   EIGENVALUES CONNECTED WITH BRAUER CENTRALIZER ALGEBRAS [J].
HANLON, P ;
WALES, D .
JOURNAL OF ALGEBRA, 1989, 121 (02) :446-476
[6]  
Horn RA, 2012, MATRIX ANAL, DOI DOI 10.1017/CBO9781139020411
[7]  
James G., 1981, REPRESENTATION THEOR
[9]   BINOMIAL IDENTITIES AND HYPERGEOMETRIC-SERIES [J].
ROY, R .
AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01) :36-46
[10]  
Sloane N.J.A, 1975, THEORY APPL SPECIAL, P225