THE MAXIMUM OF A GAUSSIAN PROCESS WHOSE MEAN PATH HAS A MAXIMUM, WITH AN APPLICATION TO THE STRENGTH OF BUNDLES OF FIBERS

被引:50
作者
DANIELS, HE [1 ]
机构
[1] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
关键词
D O I
10.2307/1427162
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:315 / 333
页数:19
相关论文
共 10 条
[1]  
BARBOUR AD, 1975, J ROY STAT SOC B MET, V37, P459
[2]  
Breiman L., 1968, PROBABILITY
[3]   ESTIMATION OF THE MODE [J].
CHERNOFF, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1964, 16 (1-2) :31-41
[4]  
Daniels H. E., 1945, P ROY SOC LOND A MAT, V183, P404
[5]  
Daniels H.E., 1974, ADV APPL PROBAB, V6, P607, DOI DOI 10.2307/1426182
[6]   THE MAXIMUM OF A RANDOM-WALK WHOSE MEAN PATH HAS A MAXIMUM [J].
DANIELS, HE ;
SKYRME, THR .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (01) :85-99
[7]   THE 1ST-PASSAGE DENSITY OF A CONTINUOUS GAUSSIAN PROCESS TO A GENERAL BOUNDARY [J].
DURBIN, J .
JOURNAL OF APPLIED PROBABILITY, 1985, 22 (01) :99-122
[8]  
GROENEBOOM P, 1984, PREPRINT
[9]  
Phoenix SL., 1973, ADV APPL PROBAB, V5, P200, DOI [10.2307/1426033, DOI 10.2307/1426033]
[10]  
SMITH RE, 1982, APPL MATH COMPUT, V10, P137, DOI 10.1214/aop/1176993919